Soldering blind just burns up profit．

G iven that some metallic substances are more easily soldered than others and that there are significant differences be soldered and in the strength of adhesion of the solder to their surface adhesion of the solder to their surfaces，
it is clearly necessary to make absolutely sure that the procedure used to solder components is correct．Testing for solderability greatly reduces the risk of failed joints and that can mean appreciable savings on rejects． authority on soldering，has developed authonity on soldering，has developed
a simple－to－use piece of equipment a simple－to－use piece of equipment
designed to assess solderability．It is called a MUST－MulticoreUniversal Solderability Tester－and it really is a must if you want to avoid the costly problems of inefficient soldering． The built－in microprocessor takes the complex force／time curve and reduces it to just two values，making the
application of the sophisticated test application of the sophisticated test method
simple．
 terminations，metal clad laminate，

printed circuit boards and plated－ printed circuit
through holes
It can be used for the Edge Dip Test that appears in IPC－S－801，EIA RS－178 and EIA RS－319 Method 2 for
evaluating quality of wetting，and for the Globule Test as described in many national and international BS 2011．2T 2 IEC 68－2－20 1． 40046 to measu 40046 to measure
wetting speed This speed， together with the wetting force， may also be measured by the quick and a wetting balance． a wetting balance．
The MulticoreUniversal Solderability Tester could make a big difference to your soldering operations－ and to your profits．For the eye－opening the coupon or contact Multicore direct．

The biggest name in solder worldwide
Pleasesendmefull detailsonthe MUST － Pl Please telephoneme \square
\qquad

Sales Department，Multicore Solders Limited，Maylands Avenue，Hemel Hempstead

Hertfordshire HP2 7EP．Telephone（0442）3636．Telex 82363.

wireless world

70 years of publicati

HESTINC MOSTLE ARADIOEST

. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation. Comprehensive testing under low cost desk computer control.

Manual systems too.

Finnell

Front cover shows (inset) de Front cover shows (inset) de.
tails of the opto-electronic contact breaker describibed in
this issue on the background this issue on the background
of a Marconi Space and De of a Marconi space and
fence Systems hybrid
microelectronic circuit.

in our next issue

Digital capacitance meter Uses the timed charge-injec-
tion method of mea surement, with an input pro-
tection circuit, poptimized to tection circuit, o
reduce errors.
Wien oscillator is a new desisn by Linsley Hood, using a
different connexion of the different connexion of th
standard Wien bridge to standard wien bridge to tion of 0.001%.
Active television deflector
receives tv signal amplifies receives tv signal, amplifies
and re-transmits it to rsin no-signal reception areas.

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

APRIL 1981 Vol 87 No 1543

37 The next seventy years
38 Opto-electronic contact breaker by J. R. Watkinson
41 More on active cross-over networks by David Read
44 News of the month Flat c.r.t. from Sínclair. Custom-built t.s.i. Microcomputers in space
Pre-amp and multi-section control. Divide by $(2 n-1)$
51 Radio observation of the 'active' sun by R. A. Ham
55 Letters to the editor Artificial intelligence. Commerial broadcasting. Designing with microprocessors. Designing with microprocessors.
59 Dividing by fractions by Gilbert Pearson
62 Phase measurements with an oscilloscope by I. D. MacArthur
65 Wireless World, 1911-1981
66 Designing with microprocessors - 7 by D. Zissos
70 World of amateur radio
71 Introduction to low-noise amplifier design by A. Foord
74 Magnetic recording review - 2 by J. Moir
79 Surface acoustic wave devices - 2 by R. J. Murray and P. D. White
83 Multipath distortion by Pat Hawker
86 Novatexts: amplitude sensing and control by P. Williams
88 New products
90 Sidebands by Mixer

Alectronic Brokers-Europe's Prem ier test Equipment Company offer

The Electronic Brokers GUARANTE

Unless otherwise stated, all test equipment sold by us carries a 12 month warranty; For VDUs and Teletypes we offer a 90 days warranty, and computers are offered with on site acceptance and diagnostic tests (which may qualify them for independent ongoing maintenance). When you buy from Electronic Brokers you know the equipment is in 'top notch' condition It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians.

A copy of our Trading Conditions is available on request.

. April 1981..... . Latest Test Equipment......

Electronic Brokernis Euiope's larsest
 Electronic Brokers 5 Europe's largest specialist in quality, secono user lest equipment compurers and associate

 peripherais. Estabielisted 14 years age onception B) thTo support our growth we have
a skilled team. This inciudestrainea a skined team tuls mciudes tranined
sies staff, whose role s not only to
sel, but provide a helpful information senvice loour many customers, Backing
sind This team is our own service laboratory equioment we sell. Out maxim us will know that we erdeavaion
ailways ive up to our reputation Europe, in fact anywhere in the worlc
"re Electronic Brokers Organisation is ust a tereptone or telex call away!

Hours of Eusiness. 9 5 p.m Mon:Fri.

Electronic Brokers Limited 61/65 Kings Cross Road
London WCIX 9LN England
Telephone: 01-278 3461
Telex: 298694 Elebro G

DON'T GAMBLE

 WITH PERFORMANCE BUY
LEVELL OSCILLATORS

frequenc
ACCURACY
SINE OUTPUT distortion
sQuare output
SYNC OUTPUT
 SIZE \& LVEIGHT

1 Hz to 1 MHz in 12 ranges.
0 to 1% fine control on TG 200 DMP
$+1.5 \%$. + . 0 to 1% fine control on TG 200 D
$\pm 1.5 \% \pm 0.01 \mathrm{~Hz}$ up to 100 kHz .
$\pm 2 \%$ up to 1 MHz $\pm 2 \%$ up to 1 MHz .
7 V r.m.s. down to $<200 \mu \mathrm{~V}$ with Rs 600 . $<0.05 \%$ from 50 Hz to 15 kHz ,
$<0.1 \%$ from 10 Hz to $50 \mathrm{kHz},<0.2 \%$
from. 5 Hz to $150 \mathrm{kHz},<1 \%$ at 1 Hz and TG200D, DM \& DMP only, TV peak down to
$\leq 150 \mathrm{n}$.
$=1 \mathrm{~m}$. $\underset{ \pm 1 \% \text { r.m.s. sine in phase with output }}{\substack{\text { I }}}$ TV freq. lock range per volh r .m.s.s.
TG200M, DM \& DMP onty 0.2 V $0 / 7 \mathrm{~V} \&-14 /+6 \mathrm{dBm}$.
$260 \times 130 \times 180 \mathrm{~mm} .4 .3 \mathrm{~kg}$ with batteries. £99 £108 £125 £130 £135

FREEUENCY,
ACCUEACY
SINE OUTHI
DISORTHON
SOUAREOUTPUT - METER SCAEES SIZE \& WEIGHT

meter ACCURACY

SINE OUTPUT
DISTOATION
METER SCAAES
SIZE \& WEIGHTT
TGB6B
3 Hz to 300 kHz in 5 decade ranges
$\pm 2 \% \pm 0.1 \mathrm{~Hz}$ to 100 kHz Increasing to $+3 \%$ at 300 kHz .
2.5 V .m. s .
down to < $<0.2 \%$ from 50 Hz to 50 kHz <. 5 V prom 10 Hz to 200 kHz .
2
2 2.5 V r.m.s. sine
$0 / 2.5 \mathrm{~V} \&-10 /+10 \mathrm{~dB}$ on
TG 152 M . T
$260 \times 130 \times 180 \mathrm{~mm} .3 .4 \mathrm{~kg}$ with
batteries.

$$
80
$$

TG152DM contros.s. 1.22 MHz
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$+0.3 \%$ from 6 Hz to 100 kHz
$+1 \%$ from 100 kHz to 300 k + 3% abome 100 kHz to 300 Hz . 30 kHz .
5 V . mov. down to $30 \mu \mathrm{~V}$ with Rs $=$
600 Q . $<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 kHz $<0.5 \%$ at 1.5 Hz and 150 kHz .
$260 \times 180 \times 180 \mathrm{dmm} .5 .4 \mathrm{~kg}$.
TGB6B TG66A Battery
model
2065 Mains \& $_{\text {battery model }} £ 280$ batteries. Carriage packing and VAT
C. Wibtionall extras are leather cases and mains power units.
Send for data covering our range of portable instruments.

MOXON STREET, BARNET, HERTS., EN5 5SD. TEL: 01-4495028/4408686

New! Sinclair 2X81 Personal Computer. Kit: $£ 49$. ${ }^{2}$ compene

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the personal computer for under $£ 100$ At $£ 99.95$, the ZX80 offered a specification unchallenged at the price.
Over 50,000 were sold, and the ZX80 won virtually universal praise from
computer professionals. computer professionals.
Now the Sinclair lead for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And saving. At £49.95 it costs almost 40% less than the $\mathrm{ZX} 80 \mathrm{kit!}$ Lower price: higher capability Weach yourself it's just as simple to ZX81 packs even greater working apability than the ZX80.
It uses the same micro-processor but incorporates a new, more powerful
BK'BASIC ROM - the 'trained intelligence of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.
peration refinements-the facility to oad and save named programs on cassette, for example, or to select a program off a cassette through the eyboard.
Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 from 40 or so, to 21. The ZX81 reducuter the 21 to 4 !
The secret lies in a totally new master chip. Designed by Sinclair and replaces 18 chips from the $Z \times 80!$

Proven micro-processor, new 8K BASIC ROM, RAM - and unique new master chip.

New, improved specification
version of the famous z8-new faster recognised as the best ever wad

 key word entry: the ZX81 eliminates a great deal of tiresome (RUN, LIST, PRINT etc.) have their own
Ini ke ent.
Check and report identify programming errors immediately.

- Full range of mathematical and scientific functions
to eight decimal places.
Graph-drawing and animated display facilities.

Kit or built
 t's up to you

he picture shows dramatically how hips to ass1 kit is to build: just four ther discrete components) - a few other discrete components) - a few hours' work with a fine-tipped soldering
iron. And you may already have a ron. And you may already have a
suitable mains adaptor -600 mA at 9 V C nominal unregulated (supplied with built version).
Kit and built versions come complete with all leads to connect to your TV cassette recorder.

- Multi-dimensio

- Up to 26 FOR/NEXT loops.
- Randomise function-useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack - Able to drive the new Sinclair printer
(not available yet-but - Advala - Advanced 4-chip design: micro--unique custom-built chip reslan 18 ZX80 chips.

ZX8I

Sinclair Research Ltd, 6 Kings Parade, Cambridge, Cambs.,
CB2 1SN Tel: 027666104 CB2 2 SN . Tel: 027666104

If you own a Sinclair ZX80...

The new 8K BASIC ROM used in th Sinclair ZX81 is available to ZX80 (Complete with new keyboard temp and operating manual.)
With the exception of animated graphics, all the advanced features o ZX80-including the ability to drive the Sinclair ZX Printer.

Coming soonthe IX Printer.

Designed exclusively for use with the the printer offers full alphanumerics across 32 columns, and highly sophisticated graphics. Special features include
COPY, which prints out exactly what 1 : on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around $£ 50$ - watch this space!

16K-BYTE RAM pack for massive add-on memory.
Designed as a complete module to fit
your Sinclair ZX80 or ZX81, the RAM your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the com storage by 16 ! Use it for long and complex pro grams or as a personal database. Yet it costs as little as half the price of com-
petitive additional memory.

How to order your ZX8 BYPHONE-Access or Barclaycard holders can call 01-2000200 for personal BY FREEPOST - use the no-stampneeded coupon use the no-stampcheque, postal order. Access or barclaycard
ITHER WAY-please allow up to 28 days for delivery. And there's a 14 -day money-back option, of course. We want
you to be satisfied beyond doubt - and we have no doubt that you will be.

Make it for a Song!

The New Maplin Matinée
 $+£ 99.50$ for cabinet if required

Easy to build. Latest technology - means less cost, less components and 80% less
wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13 -note pedalboard. All organ voices on
drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8 -instrument voicing. Major, Minor and Seventh chords. Unique walking bass lines with each rhythm Unique countermelody line with each rhythm Truly amazing value for money
Full construction details in Electronics \& Music Maker magazine.

กา1ำค니ก

 Both shops closed Mondays.

HAMEE
 OSCILLOSCOPES
 The new name in Linear I/Cs

HAMMEG LTD. 74.78 Colimg din Steor LuTON

Analog Systems, the fast growing linear I/C compony
of Arizona whose products are avoilable from Pascall offer

Hi-Speed Amplifiers
MA $207-1.5 \mathrm{GHz}$ gain-
bandwidth product.
$\mathrm{MA} 401 \pm 22$.
$\pm 20 \mathrm{~V}$ swing

MA $324 \pm 130 \mathrm{~V} / \mathrm{LS}$ slew rate
450 MHz gain-bandwidth
MA $326-350 \mathrm{MHz}$ gain Cinnilog bondwidth provict.
400 nS setting time SYSTEMS

New KONTAKT Sprays

for the Electronics \& Electrical Industries

NTAKI KALTRON 601
A new cleaner for Magnetic Recording Units. Kaltron 601
has an extremeld has an extremell low surface tension thereby y anatobing the
cleaning of magnetic sound heads leaving no deposit or
other traces. Other traces.
It ichly
non-themmialy pure
nole $(99.8 \%$) - non conductive -
non-flammabie. on energised elecitrial instalations and
then be used
tecerronic sequipment, e.g. video units, tape recorders, elean benic esediipment, e.g. .
datat processing systems elc.

Also NEW
PRINTER 66
Spray cleaner for type wheel printers, matrix
also be used for cleaning normal typewriters
SCREEN 99
Specially or the cleaning of all types of screens, including data terminals and

VASELINE SPRAY 701

For use in communications engineering and construction of antennae.
Proved successsul as corrosion inhibitor for cable clamps, connecting screw. Moved successtul as corrosion inhibioror for cable clamps, oconecting screw
ioins ete.. Apoplication from spray can with capilary tube is clean and simple.

Special Products Distributors Ltd 81 Piccadilly, London, W1V OHL

Tol: 01-629 9556: Cablos: Speciprod, London, W.
wW - 025 FOR FURTHER DETAILS

Imo can now offer you the high quality
deliability that you have come to expect in and reliailitity that y you have come to expect in
Omror relarss in their new series of low profile.
printed circuit mounting sum Oiron relass, in their new series of tow pro
printed circuit muonting subminitures.
Theres's a tremendous range fore Interface, communication and outpout application
sultable for mounting with sockets or sulitable for mounting with sockets or directly
onto orinted circuit boards. There are low cost
 considieration, and high reiliabilitet typeses like
the LZN's with gold-clad, bifurcated crosbor the LZN's with gold-Clad, bifurcated crossbar
contacts and card lift-off operation. With contarct ratings up to 10 A and 240 VAC styes and sizes, and up to four changeover contacts per relay, this range fromivo offers

Q ORDER BY POST OR TELEPHONE
WITH BARCLAYCARD/ACCESS

frequency
COUNTERS

Portable and Bench LCD and LED Counte
up to 600 mHZ . Prices include batteries an
HANND HELD
HAND HELD (UK post etc 85p
 BENCH PORTABLES

CSC - SINCLAIR - OPTOELECTRONICS - NEWTRONICS
 BEMH PORTALELESUKO

 TM351 31/2 Digit LCD AC/DC 10 amp
 DM450 41/2 Digit LED 34 ranges 2 A6. 50

54.60
$\substack{55.58 \\ 57.50 \\ \varepsilon 7.75}$

CHOOSE FROM UK'S LARGEST SELECTION TV GENERATORS LCG-393V PAL 8 VHF 6 patts $\quad £ 137.00$
SCGL-392U
PAL BUH 15 patt

WIRELESS WORLD APRIL 1981

a speatial 2 erpage supplement in Elector

The new generation of 16 -bit microprocessor systems can equal or even better the performance of present day minicomputers. This means that a 'real' computer is now within the reach of any enthusiast.
The April issue of Elektor contain 24 pase
The April issue of Elektor contains a special 24 page supplement giving a brief survey of the field, con-
centrating in particular on the following types:

Manufacturer
Intel
Motorola
National Semiconductor
Texas Instruments
Type
8086
68000
68000
16000 family
9900
9900
8001
Second sources
Mitsubishi, Mostek, Siemens
Hitachi, Rockwell,'Thomson
AMI, ITT
AMD', SGS-ATES
Comparisons are given of the basic capabilities, register sets, addressing modes, instruction sets, memory maps and support chips. The article has been checked for technical accuracy by specialists from the respective manufacturers.
elelator
Elektor Publishers Ltd., 10 Longport, Canterbury, Kent CT1 1PE.
10 Longport, Cante
el. (0227) 54439/0
ww - 029 FOR FURTHER DETAILS

Carston Electronics

Bigger stock investment greater equipment range means wider choice

BRYANS SOUTHERN BS3144 Channel 1 mV -10V 1653166 channel $1 \mathrm{mV}-10 \mathrm{~V}$ 1650 HEWLETT PACKARD 680 M .5 inch. Stripchart Single Pen 5 mV - $120 \mathrm{~V} 1 / \mathrm{P} 20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{H}$ 7046 A Two pen A $30.25 \mathrm{mV}-5 \mathrm{~V} / \mathrm{cm}$ KUDELSKI Nagra 4.2.5SP Professional Audio Recorder (Batt opoda) PHILIPS PM 8251 Single pen 10 in chart 10 mV -50V FS RACAL Store 4. Uses D/4 inch magnetic tape. Will record 4 F.M, channels S ELABORATORIES $1250 \mathrm{~mm} / \mathrm{s}-25 \mathrm{~mm} / \mathrm{min} 6$ in chart 9946 Channel Pre-Amp $\pm 1 \% \pm 1 \mathrm{~V}$ 0/p 600825 Channel $\mu \vee 8$ in $4 \mathrm{~m} / \mathrm{sec}$ to ${ }_{S}^{25 m m / T M S}$ INDUSTRIES RE541.20 Single Pen. 0.5mV-100V FSD. 3.60 cm min and hour YOKOGAWA 3046. 10 inch Chart Single Pen. 0.5 3047 . 2 Pen Version of 3046 Signal Sources and Generators BOONTON

Et	矿184
1650	
2350	GENERAL RADIO
	GOULD ADVANCE
${ }_{995}^{275}$	HEWLETT PACKARD $204 \mathrm{D} 5 \mathrm{~Hz}-1.2 \mathrm{MHz}$. 600Ω. 800 dB OP 5 F RMS
1215	$620 \mathrm{~B} 7-11 \mathrm{GHz} 50 \Omega \mathrm{FM} / \mathrm{PM} 1 \mathrm{mw}$ $12 \mathrm{~A} . \mathrm{MHz}_{2}-2.4 \mathrm{GHz}+10 \mathrm{dBm}$ $-127 \mathrm{dBm} 50 \Omega$
450	881641.84.
	MARCONI TF144 H/4S HF
1675	
1400	
450	TF2015
	TF2002/AS 10 kHz -72 MHz FM/A
895	
	$0.03 \mathrm{w}, \mathrm{C}$ cour
350	TF 2012 UHF, $400-52$
	RACAL $90815-520 \mathrm{MHz}$ LED Display O/P 130 dBm AM/FM
425	
	Ignition Interference
	tor (Mintrame)
1725	${ }_{7 / 4216}^{\text {STC }}$ Noise Generator 20 Hz -

ALL PRICES LISTED ARE EXCLUSIVE OF VAT (Standard Rate).

 CARSTONELETRONICS LTD.
SHRLE HOUE 27 CAMDEN ROA
LONDON NW1 N. Telex 23920

VRANETZ
Do5A 9999 FSO3001 module
HEWLETT PA C

PLEASE NOTE:

 LISTED HERE IS ONLY A SELECTION OF OUR WIDE STANDARD RANGE OF EQUIPMENTS RING US TODAY! Redundant Test Equipment Why not turn your under-utilizedtest equivment into cash? Ring
us and we'll make you then STOCK OF EQUIPMENT -
FOR SPECIALIST NEEDS OR FOR SPECIALIST NEEDS OR
FOR DETAILS OF OUR FULL

Exclusive representative:
Aspen Electronics Limited 2 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR
Telephone: 01-868 1188, Telephone:01-86
Telex: 8812727
wW - 034 FOR FURTHER DETAILS

NoN. DOUGLAS transformers from TITAN NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK

 we guarantee these prices to be unbeatable ANYWHERE !!| | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | Aurand | Casta | LINE ADJUSTMENT AUTOTRANSFORMERS COOQ00000000 000000000007 |
| | | | 200 210 220 230
 TYPE VA PRICE P/P
 $£$ $£$
 415 C 50 $\mathbf{2 . 1 3}$ 0.58
 416 C 100 $\mathbf{3 . 1 3}$ 1.10
 417 C 200 $\mathbf{3 . 6 5}$ 1.43
 418 F 350 5.63 1.43
 419 F 500 $\mathbf{6 . 1 3}$ 1.73
 420 E 750 $\mathbf{7 . 6 0}$ 1.90
 421 F 1000 $\mathbf{1 0 . 5 5}$ 2.05 |
| | | TMPE VA pip | |
| Mres | | | |
| | | TITAN TPANSFO CENTRAL HALL CHA WAIL ORDER ONL | AND COMPONENTS ambersid ES INCLUDE 15\%VAT |

OV: UPOMITE con:3.10n:
 Introducing the first $41 / 2$ digit handheld DMM in a

 market that's been the exclusive domain of $31 / 2$ digit models. Until now.The new Keithley 135.
Combining outstanding specification with impeccable performance. And confirming Keithley's position as a major innovator in D.M.M. technology:
0.05% DCV accuracy
Five functions
Low battery indicator
Full overload protection:
1000 V max DCV
1000 V peak ACV
300 V max Ohms
PEITIIYI 135 DIGITAL MULTIMETER 1.2345 CE-50A-1: FM / AM Field Service-CE-50A-1: FM
Spectrum Monitor

300 V max On
10 amp range

ACV Jandwidth to 20 kHz
The price - only £139 + VAT
Need a bench unit? Then take a look at the new Keithley 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$ DCV accuracy, and full function annunciators. Built up to a standard - not down to a price. Yet at only $£ 179+$ VAT, the 176 gives quality $41 / 2$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match. To find out more, fill in the coupon. And see what keeps Keithley one step ahead.

hey

KEITHLEY
Keithley Instruments Lto
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (07
Telex 847047

4: how to get your ranaits on asibual success.

320 pages worth of the latest \& best in signal processing components.
Write to Pascall for this new M80 catalogue which covers the
complete Merrimac range of signal processing components and complete Merrimac range of signal processing components and
integrated networks from $D C$ to 4 GHz . It also provides reliability data in integrated networks from DC to 4 GHZ I I also provices
the form of MTBF calculations for each product area. The form of MIBF calculations for each product area. Merrimac is one of the World's most technically advanced companies specialising in low frequency lumped element components and integrated networks; microwave strip ine components, subsystems, tigh power ferrite isolatiors and circulatiors.
So wite to Pascall today for your copy of the M80 on your
concinac if you prefer) indicating
your area of interest your area of interest - we
guarantee you'll find it one of the

Pascall Electronics Limited
Hawke House Green Street.
Hawke House, Green Str
Midadeses TW166RA.
Telephone: 109327187418 Telex: 8814536
wW - 042 FOR FURTHER DETAILS

$\begin{gathered}\text { PRODUCTION } \\ \text { TESTING }\end{gathered} \begin{gathered}\text { POWVER UNITS } \\ \text { Now available with } \\ 3 \text { OUTPUTS }\end{gathered}$ DEVELOPMENT SERVICING

OUTPUT 1: 0-30v, 25A DC OUTPUT 2: 0-70v, 10A AC OUTPUT 3: $0-250 \mathrm{v}, 4 \mathrm{AAC}$

WW - 016 FOR FURTHER DETAILS

100,000,000,000,000 Ohms

The AVO RM290 is a bench type megohmmeter with a resistance range that goes up to $10^{14} \Omega$:making it.ideal for those applications where there is a need to measure the electrical resistance of
non- conducting materials...accurately! You can use the RM290 for tects on insulating components in electronic assemblies or on capacitor dielectrics. Resistance measurements can be made at test voltages of $100,250,500$ or 1000 V . Readout from the single resistance scale on the meter is direct, irrespective of the test voltage selected. You'll find the AVO RM290 a great asset. Get in touch with us today and we'll let you have the full facts.

You'll never meet a better meter
wW - 060 FOR FURTHER DETAILS

Amcron INDUSTRIAL MUSCLE

Model - M600

* POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
\star OUTPUT POWER IN EXCESS OF 15 kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
\star D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa .
\star HARMONIC DISTORTION LESS THAN 0.05% DC- 20 KHz AT 1 kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS * UNIPOLAR AND

BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO'MATCH VIRTUALLY ANY LOAD.
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
\star TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW
^ 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack
Kirkham Electronics
MILL HALL MILI LANE PULHAM MARKET DISS, NORFOLKIP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

WW - 059 FOR FURTHER DETAILS

FASTER THAN A SCOPESAFER THAN A VOLTMETER

LOGIC MONITOR

ONLY £31
plus 15% VAT, plus post and packing
Total $£ 37.37$ including box and instruction manual.

Europe, Africa, Mid.E.Est: GSC UK LTD., Dept. 75

Instant - simultaneous monitoring of the logic state of all IC nodes
LM-1 Instantly and accurately shows both static and dynamic logic states on a bright 16 LED display.
LM-1 finds its own power.
LM-1 cuts out guesswork, saves time, and eliminates the risk of short circuits.
LM-1 is suitable for all dual-in-line logic ICs. 0 (low), and each LED is clearly 1 , LED off = logic state 0 (in the conventional IC pattern.

 Resis resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.14 \mathrm{~A}$ resoltution.
 $\begin{aligned} & 1 \mathrm{~m} \Omega \text { resolution Conductance ranges } 2 \mathrm{mS}-20 \mu \mathrm{~S} \text {-200 } \mathrm{nS} \\ & \mathrm{F} 199.00 \text { mains model } \\ & £ 219.00 \text { mains battery } .\end{aligned}$
 8010A $3 / 2$ Digit LCD
DMM Same DMM Same spec as
8012A plus a 0 Amp 8012A plus a 1 Amp
AC/DC currentrange
but no low resistance but no low resistance
range.
f159 range.
£179.00 mains model
$£ 179.00$ mains battery 8024A $3 \frac{1}{2}$ Digit hand. $8024 \mathrm{~A} 3 / 2$ Digit hand
hell LCD DMM w with peak
hold Level Detector and continu etector tester.
DC volts 200 mV - 1 KV . AC volts 200 mV - $750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $2 \mathrm{~mA}-2 \mathrm{~A}$: 14 A resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.18$ resolution.
Conductance 200 ns. Peakhold of AC or DC volts and curren Level detector operates around +0.8 V reference. Audio tone. evel and continuity, $£ 149.00$, carrying case $£ 7.00$ extra.
$8020 \mathrm{~A} 31 / 2$ Digit hand held $L C D$ DMM. spec as per $8020431 / 2$ Digit hand hela tan DMM. Spec as per
8024 A with extra conductance range of 2 mS but no peak hold, level or continuity ranges.
Complete with carrying case. $£ 125.00$. $8022 \mathrm{~A} 31 / 2$ Digit hand held LCD DMM. Spec
7s per 8020 A but no conductance ranges 7s
and slight reduction in accuracy. $£ 75.00$
carrying case carrying case $£ 7.00$ extra.

Alsc available a range of
accessories including current shunts, E
probe, f probe, TEmperature probe and
touch and hold probe. toull and hold probe.
Full details on request. The warranty period on
all items shown is y year
other than the 8020 A other than the 8020
which is 2 years.

Electronic Brokers

 $\square \quad \begin{aligned} & 61-65 \text { King's Cross Ro } \\ & \text { London, wC1X 9LN }\end{aligned}$ $\longrightarrow \quad \begin{aligned} & \text { Tel: } 01 \text {-278 } 3461 \text { - Telex } 298694 \\ & \text { Prices do not inculue carrage or Vat. }\end{aligned}$ wW 037 FOR FURTHER DETAILS

 P4OOO PRODUCTION EPROM PROGRAMME

This unit provides simple, reliable programming of up to 8 se - a single' 'program' key starts the self check - blank check program - verify sequence.
ndependent blak check
Independent blank check \& verify controls are provided along with
mode, pass /fail indicators for each copy socket and a sounder to signal a correct key command \& the end of a programming run,
Any of the $2704 / 2708 / 2716$ (3 rail) \& $2508 / 2758 / 2516$; Any of the $2704 / 2708 / 2716(3$ rail) \& $2508 / 2758 / 2516 /$
$2716 / 2532 / 2732$ (single rail) EPROMS may be selected without hardware or personality card changes.
PRICE $£ 545+$ VAT Postage paid

BULK EPROM ERASING

MODEL UV141 EPROM ERASER
MODEL UV 141 EPRO
14 EPROM capacity

- Fast erase tape $\begin{aligned} & \text { Facity } \\ & \text { Buit-in } 5-50 \text { minute tim }\end{aligned}$
B
- Built-in 5 -50 minute timer
- Safty) interlocked to prevent eye and skin damage
- Rugged construction
- Price $£ 78+$ VAT postage paid.

MODEL UV140 EPROM ERASER
Similar to Model UV141
Simila to Model UV141 but without timer. Price $\mathbf{£ 6 1 . 5 0}+$ VAT
post paid

BULK EPROMS

2716 (450ns) $\begin{array}{llllll}1-9 & 10-24 & 25-49 & 50-99 & 100 \text { up } \\ \mathbf{C 6} \text { G }\end{array}$
2716 (450ns)
single rail) $\begin{array}{llll}£ 3.90 & £ 3.50 & £ 3.10 & £ 2.90\end{array}$ Postage and Packing is included in all prices. ADD VAT at 15%,
All our EPROMS are manufactured by leading companies and are All our EPROMS are manufactured by leading com
fully guaranteed, branded and to full specification.

WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND
OFFICIAL COMPANY ORDERS/CHEQUES TO: PLEASE NOTE NEW ADDRESS \& TELEPHONE NUMBER

GP INDUSTRIAL ELECTRONICS LTD.
Unit 6, Burke Road, Totnes Industrial Estate, Totnes, Devon
Telephone: Totnes (0803) 863360 sales, 863380 technical
DISTRIBUTORS REQUIRED - EXPORT ENQUIRIES WELCOME
Ww-064 FOR FURTHER DETALLS

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of
omponents, test gear, tools, etc.
Specially interesting to the radio amateur are
the following Leader instruments available
from stock:
Antenna Coupler LAC895
3.50
3. 28
MHz
$\begin{aligned} & 3.5 \text { to } 28 \mathrm{MHz} \\ & \text { Antenna Coupler LAC896 } \\ & \text { 50MHz }\end{aligned}$
${ }^{\text {ntenna }}$ Coupler LAC896
Antenna Coupler LAC887
$144-148 \mathrm{MHz}$
TRDP Meter LDM 815
T.5 MH to 250 MHz
1.5 MHH to 250 MHz
Antenna Impedance Meter

Antenna mpedance Meter
LDM 870 MHA 1.8 MHz to
150 Mzz 150 MHz
$R \mathrm{~F}$ Power
SHR/Watt-meter LPM Price: $€ 73.00$
100 Cl SHR/Wat
00W

Send SAE for details or phone Ri
024073568 for specialist advice.
Send for our latest
catalogue. Free to indust
custo mers, 75 p post paid
A. Marshall (London) Ltd.
Kingsgate House
.
 Kingsgate House
Kingsgate Place, Kingsate Place,
Londor NWG 4 A,
Industrial Sales: 01
 Mail Order:015:6248852 2 2hh service
Retail branches: London; Glasgow; Bristol.

TYPE 746 AUTORANGING FREQUENCY METER £84.88
H_{2} to $99.9 \mathrm{KH} \mathrm{H}_{2}$
TYPE 615 OFF-AIR STANDARD £97. 13
10 MHz , 1 MHz and 100 KHz
omb flectronics, Riverside, Eyvsforo, kent da4 oae Tel. Farningham (0322) 883567
Prices, which are Cwo and ex-VAT, are correct at the time of going
to press and are sulject to change without notice.
FROM OMB ELECTRONICS

Jin the Protessionals...

Crimson modular audo
of transient and
tion of transient and steadystate distortions tenvelope distor
tion (betow 500 Hzl less than o.O5\% on on-board electronic
protection \$P. C. B. pin and edge conneator termination
 F Full range of complimentary compon
heatsinks etc. available from Crimson.

It's true. Our new. diminutive frequency counter, the *Max 50 costs a mere $£ 49.00$. Which, when you consider its totally automatic performance, is quite outstanding.
Well, what would you normally expect to pay for a guaranteed frequency range of 100 Hz to $50 \mathrm{MHz} ; 6$-digit LED display auto-ranging, polarity, slope trigger and input level; and built-
in overvoltage protection?
And there's even more. The high reliability of LSI circuitry; sensitivity of 30MV trigger threshold; 3ppm accuracy; choice of battery or a.c. mains operation, and optional antenna.

True value, and yours for the asking.
Just call us on Saffron Walden (0799) 21682 right away. Your own *Max 50 could be hand-held tomorrow! Dealer enquiries also welcomed. *For a while, supplies will be labelled 'Mini-max'
global specialties corporation G.s.C. (UK) Ltd., Dept 7 F

Hyperelliptical tip for audibly greater freedom from distortion

already own a
V15 Type III
you can upgrade it!
If you are one of the thousands of audiophiles who already own a V15. Type III, you too can benefit from the the Hyperelliptical stylus. Simply replace
your present stylus with the new VN35HE mprovement stylus. It will give your Type II cartridge the same specifications as the new V15 Type II-HE. Takes only requires no tools whatsoever.

V15 TYPE III-HE IMPROVEMENT STYLUS
${ }^{\circledR} 8$ SमUनE

wireless world

Editor:
OMIVALL, M.I.E.R.E
Doputy Editor: PHILIP DARRINGTON
$01-6613500 \times 3586$

Technical Editor: GEOFF SHORTER, B.SC.

Projects Editor: MIKE SAGIN
$01-6613500 \times 358$
Nows Editor:
MARTINECCLES
rawing Office Manager:

BETTY PALMER
Production \& Design:
Manager:
BOB NIBBS, A.C.
DAVID DISLEY
-01-661 3500×3593
SARBARA MILLER
Classified Manager:
BRIAN DURRANT
JAYNE PALMER
OHN GIBBON (Make-Lp and copy)
$1-6613500 \times 356$
Publishing Director:
GORDON HENDERSON

The next seventy years

The artist Pablo Picasso once said: "Age only matters when one is ageing. Now that have arrived at a great age, 1 might just as he same. Being the oldest radio journal in the world and having reached this month the Biblical age of three score years and en, we can justly consider ourselves - in arrived at a great age. And we might just as well be twenty because it is in the nature of a periodical publication to renew itself with each issue. It doesn't matter whether ne has produced 1,500 or only 15 mpletely new book - a new is always belonging uniquely to its own moment in history and reflecting its own world at that moment. We did our reminiscing about he past on our 50 th and 60 th birthdays. Now, already 15 years into the era of the the future and what it holds for us as any young person just starting to look a electronics as a possible career.
If we survive the next 70 years, what could we be looking back on in 2051 AD
Here a little humility is called for. If the periodical survives (and not necessarily o paper) it may well be a very different animal from what it is now. Electronics may no longer exist as a definable area of spawned electronics, which then proceeded to absorb its parent, the same hing may happen again - several times ver. On this principle one might look at other branches of science and technology and speculate if they are capable of such absorption. Optics, perhaps, chemistry, biology . . . ? Or one might even consid he complete fragmentation of electronic into a variety ory herities, some of which don't yet exist.
Extrapolation from present trends does take us a little way - greater complexity nd higher performance in electronic products, more devices on a silicon chip, and so on. This is the gadgeteering approach which envisages a world icreasingly full of clever robots, wrist
watch radios, flat tv screens and information centres in thé home. But it doesn't allow for the possibility that a
completely new, seminal device will be invented that will transform the technology - just as the valve transformed radio communication and the transistor opened the way to integrated circuits. Several laboratories are now exploring the
possible use of biological structures as ransducers and energy converters. Could this lead perhaps to a stochastic, rather than deterministic, principle of information processing and transmissi analogous to that
nervous system?
But it is unrealistic to consider a echnology in isolation from the society which produces it. You can say with truth that scientists and engineers discover and nvent things which change our lives. society and subject to its pressures. You can say with equal truth that the technology we have is a symptom of the ind of society we are: it develops in particular directions in response to our Broadcasting, hi-fi and other electronic diversions are technological responses to the needs of the "nuclear family" for entertainment and even "company" in homes that are becoming socially is
from communities. As in the past, technology will continue to be both cause and effect.
1911, in which we were founded, was he fateful year when Rutherford did the historic experiments that led him to
postulate the atomic nucleus and the picture of the atom we have now. Since then our physicists have been discovering ver more fundamental particles and our view of matter and energy has been greatly could be a discovery or insight that would unify our observations and even depart from the traditional line of thinking started by Democritus. Such an event would not mmediately alter the practice of electron profoundly the work of the applied cientists who research into physical processes to create new devices.

Opto-electronic contact breaker

Compact and maintenance free switching for electronic ignition systems
by J. R. Watkinson, B.Sc., M.Sc.

The conventional automotive contact breaker is still widely used in modern petrol engines despite its shortcomavailable for several years, but car manufacturers have been slow to remove the weak link in the ignition system. This design is simple, cheap, reasonably easy to install, and prowill drive almost all electronic ignition systems which operate with mechanical contacts.
Although many electronic ignition units are available, and several well designed constructional circuits have appeared, most of them are triggered by the existing contacts and use either inductive or capacitive discharge to improve the spark and eliminate the effect of contact bounce, but the effects of contact heel wear and timing scatter still remain.
The circuit in Fig. 1 provides an outpu which, for low currents, simulates the electronic ignition unit without modification. The existing centrifugal and vacuum advance mechanisms are retained, and the only mechanical part which must be condisc. $\stackrel{\text { disc. }}{\text { The }}$ with a lens source is an infra-red 1.e.d which is received by a spectrally and physically matched phototransistor. Light pass-
ing between the two devices is interrupted ing between the two devices is interrupted
by a chopper disc which produces a rough square wave. This waveform is cleaned up before it is used for timing because electronic ignition circuits generally require a sharp edge to trigger an s.c.r. A ger was not used because the regenerative

Fig. 2. Printed circuit board mounted on the action plate of a distributor. In the prototype Tr_{1} was mounted underneath the board.
action only occurs if the input has a low pource impedansistor is a current source. In stead, an open collector t.t.l. i.c. with two gates connected as a set - reset bistable is used. The inputs are driven in a comple mentary mode by using a third gate as an
inverter, and the remaining gate is used as a buffer. The regenerative action of this circuit gives fast switching, and a conservatively rated series regulator provides re liable operation. glassfibre p.c.b. and circuit can be built on a

Fig. 1. Switching circuit and regulator. Tr and Tr_{2} do notrequir hearsinks, but should be secured with the screws that
hold the p.c.b. in place. Note that $/ C_{1}$ must be a ceramic type to ensure reliable
operation during large temperature operation during large temperature
distributor as shown in Fig. 2. The proto type fits a Delco distributor as fitted to
many G.M. vehicles, but the layout can be modified to fit most other types. Some foreign vehicles use very small distributors, and for these it is best to house the circuit in a small metal box beside the
distributor. Installation is much easier if replacement distributor is used. Also, the second unit is useful to carry as a spare. The phototransistor is mounted directly on the p.c.b. and the l.e.d. is mounted about 2.5 mm away on a small board sup ported by 3 mm tapped pillars which also
carry the $1 . e . d$ c current. The main p.c.b. is mounted with spacers on the action plate in the distributor with 3 mm screws which must have holes drilled and tapped. As the action plate is rotated by the vacuum ad-

A set of shaped p.c. bs based on these layouts will be available for $£ 4.00$ inclusive
from M. R. Sagin, 23 Keyes Road from M. R. Sagin, 23 Keyes Road, London
N.W.2.

Fig. 4. Phototransistor and l.e.d. mounting. The two pillars must be metal types to

Why replace the contact breaker?

A conventional contact breaker consists of a cam, rotated by the engine, which opens and closes a moving contact held in place by a stiff spring. As the contacts are forced open by the cam and closed by the spring, the cam has an alternating torque acting upon it. The cam is turned about the mainshaft by centrifugally operated weights which reach equilibrium with restoring springs to give different spark advance angles for different speeds. Therefore, there are two mass compliance systems which cause a wide distribution of timing. This problem is made worse by manufacturing tolerances in the cam and general wear in the contact breakers. Although a new distributor with correctly adjusted contacts operates fairly well, this peak performance rarely lasts for more than 2000 miles, and most petrol engines spend a significant proportion of their working life with a sub-standard ignition system.	The two most common replacements for the contact breaker are a magnetic pickup, where a lobed rotor waries the flux through a coil, and an optical system, where a light beam is interrupted by a chopper disc. The magnetic system is attractive to a mass producer because magnetic components and coils are familiar, but the optical system is more attractive for conversion of an existing unit because fewer mechanical parts are required. Both types use the existing centrifugal and vacuum advance systems and, as the amount of energe extracted from the shaft is small in either case, the torsional excitation of the advance mechanism is negligible. Both systems do, however, exhibit a slight hysteresis between acceleration and deceleration as the rotor advances to take up any backlash when the engine slows. This is a small penalty and is normally of little consequence.

sists of a cam, contact breaker conwhich opens and closes a movin As the contacts are forced open by the cart and closed by the spring, he cam has an alrernauing torque acing upo shaft by centrifugally operated weights which reach equilibrium wit spark advance angles for differen speeds. Therefore, there are two mas wide distribution of timing. This problem is made worse by manufa turing tolerances in the cam and gen though a new distributor with fairly well this peak performance and most petrol engines spend a sig ficant proportion of their working :

Fig. 3. Printed circuit boards and componen
distributor
structed by the board or swarf, and th manufacturer's recommended lubricant should be restored. If the existing contact pivots on a pillar rivetted to the action plate, the pillar must be removed before the p.c.b. can be installed. Care must be taken to ensure that the small board does
not foul the rotor arm or the inside of the not foul the rotor arm or the inside of the
distributor cap. When installed, the p.c.b distributor cap. When installed, the p.c.b.
is connected to the ignition unit by a is connected to the ignition unit by a
length of good quality miniature three core stranded cable. The cable should be sup ported by a small P clip fixed by one of the mounting screws, and by the existing grommet in the distributor body. Re-
member to leave enough cable loose so that the action plate can revolve.
The circuit can be tested by connecting +12 V to the supply lead, and a low power bulb from +12 V to the output lead. The beam is interrupted. Note that the specified device does not emit visible light If the circuit switches the lamp correctly, connect it to the electronic ignition unit and take the h.t. lead from the coil directy breakdown if the rotor arm is not pointing at a segment of the distributor cap. Check that a spark is generated every time the light beam is interrupted and not when it is established
When the circuit has been tested, the distributor. The accuracy of this dis affects the overall performance of the system, and the most important paramete is tade and the line joining the mainshaft axis with the centre of the rotor arm sector It is imperative that this angle causes the leading edge of a blade to just obscure th
of the rotor arm is directly opposite a segment inside the distributor cap, with the vacuum advance at mid-travel. If this con-
dition is not achieved the engine may not dition is not achieved the engine may no
run. Another important requirement is run. Another important requirement in to avoid scatter. The angle between the blades is found by dividing 360° by the number of cylinders. Although this unit is
suitable for any number of cylinders, the suitable for any number of cylinders, the
greatest improvement will be noticed on engines with six cylinders and above, where multi-lobed cams cause more timing scatter.
The
The disc does not need great strength, and the prototype was cut from tinplate.
The centre hole has tabs which are alterna tely bent up and down to grip the cam as shown in Fig. 5. To construct the disc make a centre punch mark and scribe a straight line through the centre mark. Us-
ing a large transparent circular protractor with 0 and 180° marks on the line, mark the position of the blade edges and scribe lines to the centre. If an inductive discharge system is used, the angle between the chopper blades becomes the
dwell angle, the angle through which the points remain closed, and must be the same for all cylinders. With a conventional contact breaker the dwell angle has to be short so that the points can open a reasonable distance. Unortunately, a short dwell
angle limits the time available for primary

IN OUR NEXT ISSUE

Digital capacitance meter

This is a charge-injection capacitance meter, which is provided with a well thought out input-protection circuit to guard any initial charge on the capacitor to be measured. Sources of error in the protection circuit and elsewhere are analysed.

New Wien-bridge oscillator

John Linsley Hood describes an alternative way of using the Wien network to design low-frequency oscillators. The typical total harmonic distortion of a 0.01% in the conventional configuration. There is also an optoelectronic amplitude stabilizer.

Active television deflector

Constructing a device to help people who live in deep valleys or other places where u.h.f. television broadcasts can the recelved uormally. Placed on a vantage point nearby, it picks up the tv signal, amplifies it and re-transmits it to the viewer's house on the same frequency.
On sole 18 March reased from the manufacturers specifica lotions. If the unit is used with a c.d ignition system, the angle between the blades is not important because the spark scontrolled only by the leading edges o Cuting the dis.
Cutting the disc shape is made easier if
he tinplate is clamped to a thin sheet of he tinplate is clamped to a thin sheet of
luminium or plywood. After drilling the centre hole and filing it to shape, cut the disc to the correct diameter, cut the blades o shape and finish with a fine file on the cam. The disc is then fixed to the cam with epoxy resin after checking tha all the parameters are correct and that the disc revolves freely. When installation is complete, the distributor can be mounted the engine and adjusted for corre Although this unit will not produce a dramatic increase in performance from correctly tuned engine, the firing at high evolutions should be smoother and tick over should be very steady even when choke. However, the main benefit is maintenance free ignition system. The rototype has now been in use for five ears and the distributor cap is only re moved to show dishelievers.

BOOKS

Beginner's Guide to Digital Electronics,
by lan R. Sinclair.
146pp., paperback.
Newnes Technical Books, $£ 3.25$.
Only a limited knowledge of electronics is asthe basics of digital technique to those who have no training in electronics, but who may have accumulated information on the active and passive components used in and around integrated
circuits. He deals briefly w with digial circuits. He deals briefly with digital elements
from switching devices, through small-scal systems such as counters, to microprocessors,
though the chapter on micros, which ocupies though the chapter on micros, which occupie
only fifteen pages, is rather too cursory to be of only fifteen pages, is
much practical value.
A complete beginner may find the lack of
information on aplication information on application a little worring planation of what their role in a system might be. A microprocessor, for example, is presented as a device whose program is capable of carryin
out the action of a truth table as an alternative to a set of gates and registers, with no explanation of the advantages gained thereby

The Prestel Business,

by Roger Nicholson and Guy Consterdin 104pp., hardback.
This is not a technical approach to Prestel, bu an explanation, pricmarily for buschiness pesteple, , of what a viewdata system is, how information is provided and used, some costings and some of
the back ground. the background. This would be a good intro-
duction to the service for those who know little more than the name and who suspect that it could be of assistance in their work. There is no

More on active crossover networks

Using electrostatic loudspeakers with a common bass unit
by D. C. Read, B.Sc.Hons (Elec. Eng.)

Modifications to David Read's 1974 active filter crossover design provide for Quad electrostatic loudspeakers or
Isophon tweeters, with appropriate alterations in crossover frequencies.

An article in the November 1974 issue of Wireless World showed how some economies could be achieved in a stereo system
using active cross-over networks. One using active cross-over networks. One
such economy was. to have a mixed mono/stereo arrangement using a single bass unit working in that part of the audio band where sounds are non-directional. Sounds in the mid and upper ranges were, in the system suggested, produced by
smaller speakers fed via the amplifier/ac-tive-filter crossover units as described earlier (Wireless World, December 1973). This economy arrangement worked well, with
the added flexibility of the active filters the added flexibility of the active filters
enabling best use to be made of the five conventional cone units - one bass, two
mid-range, two upper-frequency speakers mid-range, two upper-frequency speakers

- variously selected for best operation in the chosen ranges.
Given greater financial freedom in the choice of the output units, it seemed an
attractive idea to apply such a mixed attractive idea mono stereo arrangement to a threespeaker system, using a single cone bass

Fig. 1. Basis of modified design is this on
axis speaker response curve axis speaker response curve.

unit working between a pair of Quad electrostatic radiators. An obvious benefit of band-sharing in this way was that the
use of the single bass speaker relieved the use of the single bass speaker relieved the
electrostatic units of having to produce possibly loud sounds in that part of the audio spectrum where they are at their lowest efficiency and where, especially at

Fig. 2. New crossover frequency of 100 Hz is chosen for dual electrostatic + common bass combination左

the very lowest end of the range, they cmin
generate considerable distortion generate considerable distortion.
I therefore set about making sary modifications to the active filter cir sait, given as Fig. 2 in the November 1974 article, page 444 or, December 1977, page 575. The basis for the modified arrangement is the on-axis response (sine-wave $\mathrm{Hi}-\mathrm{Fi}$ Choice, repeated here for reference as Fig. 1 .
The part of the audio band of particular interest is that between 80 Hz and aboutt divided into two regions: $80-170 \mathrm{~Hz}$ be divided into two regions: $80-170 \mathrm{~Hz}$ and
$170-850 \mathrm{~Hz}$. Considering the lower region first, the Quad electrostatic speaker response curve here shows a fall in output which has an average slope of about 7 dB per octave. It has been suggested that the
optimum rate of change of loudspeaker response in a crossover region is 18 to 20 $\mathrm{dB} /$ octave. I therefore decided that a designed filter slope of about $15 \mathrm{~dB} /$ octave would be required so that, over this part of the band, the combined effect of filter and
speaker responses would be a fall-off rate

On the high side of optimum, because 1. . energy below 150 Hz produces high second and third harmonic The upper part section being considered, from 170 Hz u to 850 Hz in Fig. 1, shows a slope in the same sense as before but at a more gentle rate of about 2 dBoctave. This slope does as in the previous instance and has to be compensated by an opposing active filter characteristic to maintain the loudspeake output reasonably constant down to the cut-off point of 170 Hz general form of the required filter response curve. In addition, I decided to move the stereo/mono change-over point furthe down the band, to 100 Hz instead of 160 Kz in the original system, which used twin with a single B139 bass speaker. The reason for the change is that in larger living rooms having floor dimensions in excess of six metres square the stereo effect is ex-
tended to lower frequencies. As the
electrostatic speakers not only gave good output to this lower point in the band but have a response shape which helps in th crossover arrangement, it seemed reason able to make the change the three requirements d fired to satisfy the furl-line curve in Fig. 2. This show the variation of voltage with frequency of the output labelled m.f. amp in the filter circuit diagram of Fig. 3. This output pro
vides the feed for speaker: an identical circuit serves the other channel. The mono bass speaker -
KEF B139 KEF B139 is suggested but any comparable unit with suitable power-handling
capacity would do - is fed via amplifier from the channel combining and filter circuit drawn at the bottom of Fig. 3. The response of the output from this circuit is shown as the broken curve in Fig. 2 curve at the new monder point of 100 Hz .
The active filter itself is a cut-down and modified version of the circuit as originally
published in the 1974 article and needs

WRELESS WORLD APRIL 1981
little further description. Op-amp IC_{3} provides the high-pass output with the ridged-T section between Tr_{2} and T_{4} vetween 1 kHz and 100 Hz (with slope controlled by the choice of value for R_{6}. Op-amp IC_{4} provides a mixing point and suitable low-pass response for feeding the common bass unit.
For people with the room space and the pocket money to suit, an improvement in having four such units stacked in pairs. Frames specially designed for this purpos re now available* The resulting increased cadiation "frontage" and power-handility enthusiast. But you might need to make peace with the neighbours first!
At the other end of the scale, with cost an important factor, the Quad units could be replaced, using the original 0.33 or cu. Isophon KK10/8 tweeters, instead of 27s. For those interested in such a varia ion in the arrangement, the circuit of Fig . gives the alternative component values slightly different filter response curve, as hown in Fig. 5, suitable for feeding the Isophon units. The applied volts curve for the KK10/8 and cross-over point to the 110 was adjusted to obtain the flat overal
cle. Listening to the various systems with pink noise (i.e. constant energy per octava) and sweeping through the audio spectrum have become aware that room acoustics used an anechoic chamber during the speaker development I realised that a wedge shape filled with sound absorbent material would be available to me by
*From Audio-T, West End Lane, London NW6

FREQUENCY (Hz)
Fig. 5. Applies voltage curve for 0.33 cu.ft shows response with low-pass filter only.
dertaking an attic conversion. The sloping roof to the now-boarded floor provided the wedge behind my electrostatic speakers. lothes from a once-too-full wardrobe (all he family have been equally deprived). I have now achieved an excellent listening oom me. Hitachi complementary pair 2SK133, 2SJ48 and I obtained a kit from Ambit International the details of which are in their second catalogue. The kit for each board, data sheet and component location (heat sink $£ 6.32$). After many tests on this amplifier, and accepting the no secondary Fig. 6. In recommending this power amplifier circuit, David Read points out that power m.o.s.f.e.e.ts can suffer from h.f.
instability between 100 and 1000 MHz , instability between 100 and 1000 MHz , Which will heat the eresistor in the RC network across the load (1mbi-10r). He
suggests keeping to the Ambit-proven suggests seeping to the Ambit-proven
layout, with f.e.ts mounted on the board. IFurther details in Ambit catalogue, no. 3 page 61/2, no. 4 page 87/6, available fro
200 North Service Road, Brentwood, Essex.) Inductor is 12 turns at 12 gauge wsex. Wound on a 10Ω resistor. Reverse the
two diodes in the 2SJ48 gate circuit.
breakdown and self-limiting with nega ive thermal coefficient properties, the only criticism was that the quiescent current fell markedly after a long period at
maximum power out and distortion measured a few per cent. I considered adding positive temperature coefficient thermisors at the variable resistor position but as these appear to be highly non-linear de-
vices I felt the best solution was to use large heat sinks on the m.o.s.f.e.ts to minimize the temperature rise. A word of warning - lath and plaster ceiling and oose tiles don't get along with large bass speakers
A finiers.
A final point on overload margins. The pk-pk out, approximately 4 V pk-pk in. The worst-case active filter networks is 13V pk-pk clipping in the bandpass or high similar headroom in each the active filter output pots are at about a third up from the earth end, this being correct for the m.o.s.f.e.e.t. power amplifiers.

Having listened to Quad pairs and stacked pairs it does seem that the slope
between 200 Hz and 1 kHz should be lessened, so I suggest halving the $120 \mathrm{k} \Omega$ resistor at Tr_{4} base. It would seem that as you go down the audio spectrum phase coherence increased and this gives an This is undoubtedly related to the large radiating area from stacked Quads and the large sound absorbing area of an attic conversion.
If you are aware of sound level peaks in your listening room then some pre-fab-

Continued on page 54

In

Microcomputers in space

British Aerospace. Space and Communicauich
microcomputer module (SMM) as a standard unit suitable for general application in satellite systems. In addition to the hardware, the Division is also developing the necessary computer
programs which includes all the basic executive routines needed to control an SMM system. Eash SMM is a totally self-contained microcomputer. One of the design aspects of
particular note is that of flexibility in choice of microprocessor used. The SMM development system at the Space and Communications Divi-
sion currently comprises sion currently comprises a Ferranti F100-L,
three Texas Instrument 9900 's and a DEC three Texas Instrument 9900's and a DEC
PDP11/34 mini computer, all running with compatible software and common hardware inthe $\begin{aligned} & \text { terfaces. }\end{aligned}$ The F100-L which has been selected for use microprocessor with low-power dissipation, single chip encapsulated in a 40 -pin dual-in-line single chip encapsulated in a 40 -pin dual-in-ine
package. Military standard cessors are subjected to additional special for service in space.
A method of interconnecting up to 64 SMMs has been developed such that not only can their
processing capabilities be shared for anier processing capabilities be shared for compiex
computations, but tasks may be transferred to other units should faults arise in individual devices. Input/output functions are performed by
non-intelligent modules which are linked in an non-intelligent modules which are linked in an
SMM system by a two-wire serial data bus designed by the Space and Communications Divi-
An addressable serial bus interface circuit
An
An addressable serial bus interface circuit
ASBIC) is used as the standard interface for connecting a module to the bus.
Data and control instructions
Data and control instructions are transferred per second. The ASBIC performs all data synchronisation, module address detection and he serial-to-parallel and parallelecto-s-serial formation betweessary a module and transferms.
An An ASBIC comprises a single 40-pin ceramic dual-in-line package. It is an LSI circuit manu-
factured by Ferranti using collector diffusion isolation and the uncommitted logic array technology developed by that company. It is TTL compatible, and importantly, operates at very
low power levels from a single 5 v source low power levels from a single 5 source, an
advance over similar circuits using hybrid and discrete tecchnologies. It contains a 16 -bit
parallel data highway ideally suited to microproparallel data highway ideally suited to micropro-
cessor applications and is manufactured to full cessor applications and is manufactured to full
military specifications. Utilising ASBIC, nonintelligent terminals can be adapted for connec-
tion to the data bus with the minimum of addition to the data bus with the minimum of addi-
ional circuitry. The configur
The configuration of the SMM and the
selection of the military version of the Ferranti
F100L microprocessor is the outce F100L microprocessor is the outcome of an
engineering study carried out over the last 18 engineering study carried out over the last 18
months by the Space and Communications Division to assess the operational characteristics
required of microprocessors for prolonged serequired of microprocessors for prolonged ser-
vice in space, aboard satellites. The F100-L was selected because its bipolar technology renders
it inherently more resistant to radiation damage, with the added merit that it is the only 16-bit microprocessor wholly designed, developed and
manufactured within Europe. Throughout the study, liaison was maintained with the Europan Space Agency (EEA) to ensure the
technical solutions proposed were compatible technical solutions proposed were compatible
with data handling requirements for satellites with data handling
specified by ESA.
Before the study
Before the study began, British Aerospace Dynamics Group had already acquired consid
erable fluence computer operations in space as a result of previous privately-funded technical evalua-
tions. The Group is continuing to invest money tions. The Group is continuing to invest money
in the current research and development work, the cost of which is being shared by the Department of Industry as part of the UK Space Tech
nology Programme nology Programme.
The Space and C be incorporating SMMs in the next generation of satellite systems they build nend have begun evaluating the device with its supporting com-
ponents to qualify it for use in the space environment. In addition to space, it is envisaged
that SMM will be minently suited for a wide that SMMs will be eminently suited fo
variety of data handling applications.

Computer in case

Intended for the 'globe troting' reporter,
salesman, engineer, programmer, auditor etc model 8400 computer is fitted into a briefcase.

Produced by Microdata Computers Ltd, in
Hayes, Middleses Hayes, Middlesex, the computer incorporates
many features to make it not only portable but also of practical use: it may be connected to a wide range of power supplies' voltages and fre-
quencies and so may be

China standardizes in Industry

From a previous policy of self-reliance, China
has embarked on a comprehensive programm has embarked on a comprehensive programme
of modernisation including a number of product
standards and a standards and a building and civil engineering
code. Details are included in a report code. Details are included in a report, $E x$ xporting
to China prepared by the Standards Association of New Zealand and available from the British Standards Institute's Technical Help to Ex Chinese standards are divided into three grades - national, ministerial and enterprise and the policy for each grade is explained. De-
tails are given of the types of products covere tails are given of the types of products covered
by the mandatory National Standards. Ther
are are two Chinese standards covering labelling
requirements for shipped requirements for shippedd goods and the labels
are clearly illustrated. The report includes full are clearly illustrated. The report includes full
addresses of all relevant organisations, cor porations and embassies.
As if to underline. that such trade is no
necessarily ond-way, Hitachi have necessarily one-way, Hitachi have announced
the signing of a contract for the establishment of a io oint venture companpary in Frajuan Provisince,
China for the production of television sets. InChina for the production of television sets. In
tended for domestic sales and for export, the tended for domestic sales and for export, the
company expects to be producing 200,000 company expects to be producing 200,000
colour and 180,000 black-and-white tv sets per
in the world; it incorporates a real time clock
in the world, it incorporates a real time clock
which can display GMT and local time; it in cludes acoustic couplers for transmission and
reception of programmes or data through the reception of programmes or data through the
telephone network. There is a full ASCII keyteard, a fold-away dot matrix gas plasma screen
bole board, a fold-away dor matrix gas plasma screen
with a capacity of 480 characters; there is full text processing capability and the magnetic bub-
ble memory does not lose data when the power ble memory does not lose data when the power

Integrated circuits to your own design

Isolated oxide CMOS, or ISO-CMOS, can be
used to produce integrated circuit devices of lised to produce integrated circuit devices of
higher speed, lower power consumption, lower
propagation delays, propagation delays, higher densities and lower
cost per function, according to the new GEC company, Marconi Electronic Devices Ltd
which has been set which has been set up to combine ISO-CMOS
with the established Cellmos computer-aided with the established Cellmos computer-aided
integrated circuit design service, the combined integrated circuir design service, the combined
service to be known as SO-Cellmos., By the
addition of bigger and better computers and addition of bigger and better computers and
improvements in software, the service can now improvements in software, the service can now
take a logic design, feed it into the computer
which can analyse the circuit and can demonswhich can analyse the circuit and can demons-
trate the output response to any given input gates from its own library and place them automatically in relation to each other to produce an optimal layout. The interconnect tracking is
also laid out automatically. The layout is then malysed with capacitance measurements and nhecking for the effects of possible transients. It is also checked against the design rule book.
All this has taken place within seconds of All this has taken place within seconds of
entering the original design into the computer. Two plots are produced; one of the proposed
layout with pad positions etc. The other is a layout with pad positions etc. The other is a
diagram of the chip in logic diagram form, diagram of the chip in logic diagram form,
allowing the customer to check it against his original circuit. At this stage, changes to the
circuit may be made to correct any errors or to

Keyboard research

It has long been known that the 'qwerty' key-:
board is not the most efficient way of arranging board is not the most efficient way of arranging
the letters. In fact it was originally designed to the letters. In fact it was originally designed to
slow down the typist so that the primitive
mechanics of early typwriters could cope with the task and not suffer from entanglements. The European Commission is inviting tenders for a
unified keyboard layout suitable for the many unified keyboard layout suitable for the many
languages based on the Latin alphabet. The keyboard layout will be used within the Commission and other European or international
organisations who need to deal with many lanorganisations who need to deal with many lan-
guages. Whether the reseach will lead to a major re-design of keyboard layout or iust a tidy-up
exercise of the comparatively miner differenes exercise of the comparatively minor differences
in the various nationality keyboards remains to in the v.
be seen.

Authors recognise

technical writers
The Society of Authors (a professional society representing over 3000 writers) has under con-
sideration a plan to form a Technical Writers' sideration a plan to form a Technical Writers'
Group within the Society, to cater for the needs Group within the society, to cater for the needs write about technology are themselves much affected by the introduction of new technology
in publishing and printing, and by rapid in publishing and printing, and by rap
changes occurring in this field of writing. Thange occurring in of this special Group would pro-
The The formation of a special Group would pro-
vide technical writers, in addition to the normal
services of the services of the Society, with the benefit of a core
of expertise in this expanding area of writing and the opportunity to discuss problems common to technical and scientific writers.
These matters were discussed by Stanley These matters were discussed by Stanley
Lyons in a special article in The Author reLyons in a special article in The Author re-
cently. Copies of this - and further details bout the Society - may be obtained gratis

This cross section illustrates the basic prin ciple of ISO-CMOS
add modifications.
add modifications.
Once the layouts are accepted by the customer, they can be simply translated into magnetic tape format for the automatic preparation fapes are generated for the automatic testing of tapes are generated for the aut
the finished integrated circuits.
A simpler and even more rapid approach is
suitable for those circuits suitable for those circuits which can be adapted
to the ISO-CMOS uncommitted logic array The Cellmos system can generate a layout for

Centre to study effects of technology on society

The interaction of electronic systems such as computers and data processing equipment with to be studied by a new research centre now bein studied by a new research centre now
being set up in the UK. Called the Technical Change Centre, it is mainly concerned with the relationship of technology to economic well-be-
ing in the UK: it will develop "a major proing in the UK: it will develop "a major pro-
gramme of research on the choice, management and acceptability of technical change relevant to the advancement of the national economy" in
the words of its official statement. But it will the words of its official statement. But it will
also study changes in society and the economy which act as pressures influencing the course of technical innovation. A related area of research
will be "trade-offs" between economic advance and social loss (in such matters as pollution and conservation) and the way technical change could be planned so as to reduce the inevitable
disruption it causes in people's social and occudisruption ives.
The economics bias of the TUC is reflected in the choice of its director, who is an economist,
Professor Sir Bruce Williams. Among many other appointments he was economic adviser to the Minister of Technology in 1967. Electronics mittee having as one of its members Philip Hughes, who is managing director of Logica, he well-known software and electronics company. Funding comes from the Leverhulme
Trust, which will contribute $£ 1.5 \mathrm{~m}$ over the first five years, and from the Science Research Council and the Social Science Research Couni1, each of which will provide $£ 525,000$ over the
same period. Eventually the Centre is expected to have an annual budget of $£ 750,000$, with
to some of it
research.

To some extent the TCC resembles the Office
of Technology Assessment (OTA) wish was
established in the USA in 1972 - but by law. It established in the USA in 1972 - but by law.
is intended to be of practical help to those technocrats in government, industry and elsewhere who have the task of shaping public poilcies to respond to technological development
and the changing position of the UK in the

Gallium arsenide

 invadesSilicon Valley
The Harris Corporation is moving ahead on its
first semiconductor operation in San Franciso's famed 'Silicon Valley' area by approving con-
struction of a $\$ 4$ million facility in Milpitas, near struction
San Jose.
The co
The company is making the investment on
behalf of an 80 -per-cent-owned new behalf of an 80 -per-cent-owned new company,
Harris Microwave Semiconductor, Inc. The firm was established last June by Harris and a group of local semiconductor executive,
pecialising in the new field of gallium arsenide specialising in
technology.
Gallium arsenide is a compound of two elements, gallium and arsenic. As a base material
for integrated circuits, it offers significant advantages over silicon in in applications requiring very good speed, high frequencies and extreme miniaturisation. Harris will use this technology
to produce gallium arsenide transistors, to produce galium arsenide transistors,
microwave components and integrated circuits to support their communications and informa-
tion processing equipment now under de-

Flat c.r.t from Sinclair

Clive Sinclair of Sinclair Research Ltd has re
cently announced the successful development a flat cathode ray tube which will be incorpo ated into a miniature t.v. set. The set will
include v.h.f./.f.m. radio and may be switched to most international t.v. standards, making it of niversal us
The Sinclair tube measures about $4 \times 2 \times 3 /$ one quarter and a tenth of the power and is half the volume of a conventional c.r.t. with th same size screen. It is assembled from just two
sheets of glass, a flat front plate and a vacuumformed backing plate. The phosphor screen is coated on the inside of the backing plate and viewed through the front face from the sam

ide that the electrons strike. This gives brightness of more than double. that of a conven tional c.r.t. with the same beam energy. In
addition to the horizontal and vertical deflection plates there is a third set between the phospho screen and the front face to bend the electron beam on to the screen.
To correct for distortion the screen height is
reduced by as much as half while the width is ept constant. This narrows the ang ubtended by the electron beam and the pictur eight is restored optically by using a horizonta 3 in. diagonal. Other distortion is eliminated careful attention to he modulation applied to deflection plates.
The tube has been produced in Sinclair's pilo has just been announced that a full production plant is to be commissioned in Dundee by the Timex Corporation. Timex were awarded the
contract by Sinclair because of their expertise in automatic production. It is expected that at the end of the first phase the capacity will exist to reat The Microvision t.v. set which will incorpo-
rate the tube is also to be produced by Timex and should be on the market by mid-1982. Although the exterior design of the set has not een completed, some design models have bee

$\times 1$ in or about the size of a paperback book Further developments for the tube depend pon the extremely high brightness which m in projection systems. A monitor for the Sinclai personal computer is high on the application st, as is a colour projection t .v. which woul
incorporate three of the tubes and the associate lectronics in a projector about the size of a sho bxa to produce a picture on a wall screen with 50 in. diagonal.

Electronics bosses disagree on industry's priorities

Oposing views on the future of the Britis
electronics industry were expressed recently b electronics industry were expressed recently b
two of its prominent figures, Mr Ernest Harr son, chairman and chief executive of Racal, and
Mr Frank Chorley, deputy chairman and man Mr Frank Chorley, deputy chairman and man aging director of Plessey Electronic Systems.
Mr Harrison believes that rationalisation will be necessary in the UK industry to meet foreign competition effectively. In a speech to
stockbrokers inductrialists stockbrokers, industrialists and financial jour-
nalists he said: "If we are to survive as a natio in professional electronics, or indeed in any of the electronics industries, we have got to do
something about our resources and getting to something about our resources and getting to
gether. We are going to face in the 'eighties the gether. We are going to Aace in the eighties the
might of Japan and America and these two countries are determined to dominate the world.
They spend huge sums They spend huge sums on research and de-
velopment the like of which we cannot imagine. . . . The competition is going to be intense and it cannot be avoided". Referring to
the rationalisation that had already taken place the rationalisation that had already taken place

- Racal taking over Decca and Thorn taking - Racal taking over Decca and Thorn taking
over EMI - Mr Harrison claimed that "many more people now agrree with what I have been
seying that saying for a long time",
One exception, how
"I certainly don't agree with Errie on that," he said, in reply to a question at a press lunch. "It's
a good idea to scrap it out becuse a good idea to scrap it out, because it makes us
all more efficient." Companies in the UK industry were well able to look after themselves. Racal, Marconi and Plessey were all highly
successful, though they were perhaps not successful, though they were perhaps not good
in all areas. There was no benefit to be gained by bringing them together.
A further difference of attitude emerged on
the two companies' involvement in military the two companies' involvement in military
electronics. Despite the fact that a large propor electronics. Despite the fact that a large propor-
tion on Racal's business has always been in this
field (about 38% recently) and is likely to con field (about 38% recently), and is likely to continue so with the acquisition of Decca, Mr Har-
rison declared: "We are too much in Defence.
huis is much too large a proportion of our total business. What about the many applications for
electronics in the old manufacturin industrie electronics in the old manufacturing industries
in the UK? Who's going to do them?" He gave one example of a civil application which wa fairly new to Racal - electronic funds transfer A new company was doing a lot of development
in this area and it had a good product but things were moving slowly because "the banks canno make their minds up"
Mr Chorley's attitude about his own com-
pany, however, was that "The Defence industry pany, however, was that "The Defence industry
is very successful in the UK. From time to time
Socialist MPs have complained to me that we
ought to make calculators and other such pro ducts, but we have got to do what we are good ready exists for us. The UK has a significant ready exists for us. The UK has s a sign
lead in this field - so why not exploit it?" One matter on which both men were agreed as that the UK electronics industry should ailions of pounds that the present administraion is now pouring into steel and motor cars Mr Harrison commented enviously "Ju you were given a abillion pounds to invest in

Fourth TV channel signal monitoring

The quality of the transmitted signal of the new fourth telvivision network due io o ointo service

 fourth television network due to go into servicin the autumn of 1982 (News, January issue) will be monitored by automatic cquipment. In struments will be provided for the complete
network of main staini Farc the supervision of astatation controller which in turn is linked back to a c computer at a regional operations cerntre. The e automatic monioring
equipment, based on a Marconi Instruments
insercion signal analyser, operates under soft
ware control. All parameters imporant in tin ware control. All prameteters important in the
maintenance of picure maintenance of picture quality can be moni
tored and the results compared with limit stored in the equipment. Warnings can then be given and executive action taken if any parame Ter falls ousside its defined limits
The monioring
for the IBA by Marconi Instruments under for the IBA by Marconi Instruments under

Alternatives for society

 Appropriate technology, community commu nirations, alternativest to numclear energy andselfremulating educato are anong the alterna-
 discussed in 30 small forums at the First Assem. According or its convener, Jonh ग appuorth "Human survival now depends on the swiftness instiutuions can be made small enough for them to be manageable and more adequately respon-
tive to human -ive to human control." The education forum
i be guided by Dr K. L. Smith of the

Electronics Laboratories, University of Kent a Canterbury, Details from Fourth World, 24
Abercorn Place, London NW8 (tel: $01-286$

More news from Sinclai

 To be launched at the Microssstems '81 exhibtion is a new Sinclair personal computer. It will incorporate a new, Brisish, custom-built master
 are also to be announced of a low cost printer
and supporting software libraries.

Detecting drivers' behaviour

An electronic indicator which can be laid simply
and quickly on a road surface to spot faulty and quickly on a road surface to spot faulty
driving has been developed by engineers and psychologiss working in the cyhool of Automo-
tive Studies at the Cranfeld Institute of Tech nology. nology.
Although its most obvious use is to alert
police to drivers who are police to drivers who are drink-impaired, the
Speed and Alignment Indicator can also be used to monitor speed alone. It could play a part in to monitor speed alone. It could play a part in
studies of driver behaviour too - a field in
which there are many which there are many opinions, much specu-
lation, but few certain ways of finding out precisely how drivers drive their cars.
When laid on the road the indicator looks like the rubber tubing used to count passing
vehicles. Two tubes are laid parallel to one another across the carriageway and six feet apart. Beyond them is another set of tubes arranged like an arrowhead pointing in the same
direction as the traffic flow. Each tube has a dranstiducer which converts the pressure of
then vehicle wheels passing over them into an
electronic signal to a micro-computer by the electronic signal to a micro-computer by the
roadside. The micro converts the signals into roadside. The micro converts the signals into
the speed of the vehicle and its alignment on the

$\xrightarrow[\text { Vehicle speed is computed from the interval }]{ }$ in time between the wheels passing over each of
the two parallel tubes. Alignment is computed by the driver first of all driving along a straight
line laid up the centre of the carriageway. This
line ends at the arrow's tip, from which two line ends at the arrow's tip, from which two
rubber arms slope away - the shape of an
arrowhead. If the arrowhead. If the driver has aligned the two
arms of the arrowhead simultaneously If one arms of the arrowhead simultaneously.
wheel strikes its an vehicle must be off the centre line.
The micro-computer is both 'I The micro-computer is both 'Intelligent' and versatile, making a decision in milliseconds on
whether a driver has passed or failed each of the two tests set by the operator. He/she can pre programme the device with the speed limit of
the road and can also decide on the margin of error allowed to a driver on the alignment test British or metric units can be chosen and the indicator will give separate decisions on speed
and alignment. The micro's decisions are and alignment. The micro's decisions are
flashed on a screen in front of the poperator as
'pass' or 'fil' ' oogether with 'pass' or 'fail' together with the figures for speed
and the number of inches or centimetres by and the number of inches or centimetres by
which the car is veering from the centre line. which the car is veering from the centre line
The decisions are also printed out, and a warning buzzer sounds when the error limits are
exceeded. The indicator can ese to exceeded. The indicator can be set to record every vehicle passing, or it can print out for
failures only - whichever mode the operator chooses.
The equi The equipment is compact and easy to use. It.
can be carried round in the smallest of ocars. The can be carried round in the smallest of cars. The
Speed and Alignment Indicator is a prototype Specd at the moment, but it can be made and
only
marketed easily if there is a demand for it marketed easily if there is a demand for it. If
police forces were interested in using it, the
indicator could be set up on a road with a ndicator could be set up on a road with a
warning sign telling motorists that they were
about to be tested. Drivers would about to be tested. Drivers would then align with the guide line to the arrowhead and drive
along it: if the indicator showed a driver to be
out of aligment he could be stopped further
down the road and asked to take a breath test. At the moment police can stop a motorist and
test him if they have 'reason to believe' he might test him if they have 'reason to believe' he might
have drunk too much alcohol, but there is no have drunk too much alcohol, but there is no
objective test of this and motorists have always opposed random testing
The indicator could
The indicator could also be used to study
driver behaviour by being set up to show, driver behaviour by being set up to show, for
example, how people take corners, road position, etc. There is no objective, accurate and eass, way
moment.

C.b. to become legal with f.m.

Mr William Whitelaw, the Home Secretary, has announced that Citizen's Band, officially still
knownas Open Channel, radio is likely to beknownsas Open Channel, radio is likely to be-
come legal in the autumn of 1981. Two wavecome legal in the autumn of
bands are to be allocated, 27 MHz and 930 MHz both to be frequency modulated. Amplitud modulation is to remain illegal and f.m. ooperators will require a licence. No details are avail
able as to the maximum permissible signa strength or the number of channels but a draf specification will be issued to potential manu facturers.
The Eu The European Communities Commission is nical regulations studying French proposals for a 27 MHz servic with a maximum strength of two watts and fewer than 22 channels
Wireless World will Wireless oorld will be publishing a series ol constructional articles for those wishing to build
a c.b. set.

Approval and dis-approval for telephones

Although, under the policies of the present Gov-
ernment, British Telecom is to lose its monopoly of providing telephones and other attach-
ments for use on telephene ments for use on telephone lines, it is very much
concerned that there will not be a free-for-all. At present the only equipment permitted is that certified by British Telecom as suitable for use as an attachment. This ensures that the equip-
ment is technically compatible with the British
network; it presents a minimal risk of injuring
people or damaging the system; it does terfere with other customers' use of the net-
work; and it is work; and it is correctly connected, to help in
diagnosing faults. Even when British Telecom lose the monopoly, they will still be the sole supplier of the first telephone connected to the
exchange line entering a person's home or exchange line entering a person's home or
office, under new arrangements proposed by the

Government. Certification of the suitability of attachments will continue but will be no longer
carried out by British Telecom but by an independent Government approved body which will establish and publish standards for privatelf supplied attachments and then test and certify
that the attachments conform to the standards. British Telecom warns that most telephone equipment now on sale in shops and departmen
stores is stores is not specially designed or modified for
use on the British network, despite various
. claims that it 'meets British Post Office stan-
dards'. It is nearly all made and designed for use abroad. If connected to the British network, it may not work properly. Phones designed for
overseas use are frequenty insufficiently senoverseas use are rrequenty insufficiently sen-
sitive for satisfactory operation on all ines in the U.K. Mains-powered equipment can be electrically unsafe. Not only do the owners of such
equipment suffer, but also the callers whose equipment suffer, but also the callers whose
calls are made inneffective if the apparatus does not respond correctly, or gives poor quality re-
ception. British Telecom are threatening, reception. British Telecom are threatening, re-
gretfully, to disconnect the telephone lines of gretfully, to disconnect the telephone lines of
customers who persist in using uncertified equipment.
To counter the sales of such lillicit phones, gramme of offering a wider range of telephones to be supplied direct to the customer. Two additions to the range are illustrated. On the left is
Dawn. Intended for the boudoir, it has a low, sculptured profile on a circular base and is available in pale yellow, avocado green and white. The one-piece Eiger telephone, with a press
button keypad, includes a memory to store the button keypad, includes a memory to store the
last number called. It can call again automatically, if required to. The colours are more

Divide by $(2 n-1)$

Fig．1（a）shows a divide－by－（2n－1）circuit which generates an equal mark－to－space ratio output if a divide－by－2 circuit is used in the final stage as shown in Fig．I（b）． With this arrangement，a divide－by－
$\mathrm{n}-1 / 2)$ output is available from the di－ $\mathrm{n}-1 / 2)$ output is available from the di－
vide－by－n counter，but not with an equal mark－to－space ratio．Fig． 2 shows a divide－ by－3 circuit，based on Fig．1，where the divide－by－4 counter is clocked by a posi－ ive edge of the input waveform and then by a negative edge．During one complete
output cycle the divide－by－4 counter re－ ceives four clocking pulses for three cycles of the input waveform．A divide－by （ $\mathrm{n}-1 / 2$ ），i．e．divide－by－ $1 \frac{1}{2}$ ，output is avai With fhe bas
With the basic circuit of Fig． $1(a)$ it is inserting the desired divide－by－2n circuit． Also，by combining divide－by－（ $2 \mathrm{n}-1$ ）and divide－by－ 2 n circuits，a counter can be de－ gned to divide by any value of $(2 n-1)$ ， that inputs and outputs between the various exclusive－OR gates must be separated by a counter．
A．J．Ewins
Middx
$1 / \Gamma \square \square \square \square \square \square$ ＊ャレームームース $a_{A} \downarrow \square \square \square \square \square$ $0_{B} \quad \square \longrightarrow$

Fig 2 （b）Waveforms of divide－by－ 3 circuit

Divide－by－7

Pre－amp with multisection tone

 controlThe input stage of this preamp，which originates from a studio mixer，will handle
signal levels from $500 \mu \mathrm{~V}$ to 5 V r．m．．For optimum performance the preset control hould feed 5 mV to Tr_{2} which，with \mathbf{A}_{1} ， amplifies the signal to 3 V r．m．s．The filters
around gyrators A_{3} to A_{7} provide low－im－ pedance paths to ground for five frequency bands，and attenuation or gain for these bands is achieved by controlling the low－ mpedance paths towards the voltage di－ viders around A_{2} ．Balancing the filter po－
tentiometers gives unity gain at A_{2} because the input and feedback voltage－dividing networks cancel each other．The open－loop gain of the op－amps determines the maxi－ num number of gyrators that can be used． At 15 kHz the paralleled gyrator series re－ strapped by the open－loop gain，should still be greater than the divider source im－ pedances， 2 k 7 ，and prevent unexpected
ips or peaks high frequencies．
Amsterdam
Holland

One－shot control of immersion heaters

A conventional immersion heater requires two operations，switching on and later switching off．Although simple，the second This inconvenient and costly if forgotten． obviates the circuit is easy to install and the heater．A relay forms a one－shot mo－ nostable which is thermally rather than electrically controlled．A trigger is pro vided by the start button which energizes the relay coil，and the heater is powered
until the thermostat cuts out and de－ener－
gizes the coil．Water temperature，and therefore the duration of the on period Apart from the relay connections，only on extra low－current wire is required between the start button and the thermostat． This circuit can also be used to isolat failure．
S．Ho and S．Ho and
D．Wibberley
D．Wibberley
Manchester

Power supply with stable current limit

One problem with power supply current limits, which use the V_{BE} drop of a transistor, is their drift with temperature varia-
tion. A simple solution is to use a programtion. A simple solution is to use a program-
mable Zener diode for current sensing, which offers less than $50 \mathrm{p} . \mathrm{p} . \mathrm{m} .{ }^{\circ}{ }^{\circ} \mathrm{C}$ variation in $V_{\text {ref. }}$. In the circuit shown

$$
I_{\text {limit }}=\frac{V_{\text {ref }}-a V_{\text {ref }}}{R_{\mathrm{Sc}}}
$$

When the voltage at the R terminal of When the voltage at the R terminal of
TL431 switches it on, base drive for the output transistors is removed and the output current is limited. However, if the output terminals are shorted, the TL431 is turned on but the voltage across it is 2.5 V . zero, V_{z} is required which can be any low voltage Zener diode above 2 V .
M. S. Suresh

Bangalor
India

"Test your knowledge""

Answers to the December issue multiple-choice quiz

None of the entries received for Test Your Knowledge was completely correct, and the best entries had at least three of the answers wrong. That was one result of th quiz compiled by R. W. Ellingham and B, L. Hart and published in last December's tions, each with multiple answers, given to electronics students at the North East London Polytechnic. We offered prizes of Circuit Designs 3 or a subscription to Wireless World for ten correct entries 2 March for overseas
The answers provided by the authors are given in the panel. As almost all entrant gave the incorrect answers to questions are their solutions. Question 3 . The
bipolar junction trsertion is not true. A p-n junctions both of an when of which are forwar suitable biasing it is possible is saturated. By the two junction drops to be equal in mag nitude.
The reason is a true statement. Operation of the b.j.t. depends on the existence is the correct mies. Therefore

Question 24. See diagram. For neutraliza tion $I_{1}=0$ when $v_{1}=0$.

$$
\begin{aligned}
y_{12} v_{0} & =-\frac{n_{1}}{n_{2}} v_{0} Y \\
Y & =-\frac{n_{2}}{n_{1}} \cdot y_{12}
\end{aligned}
$$

$$
=-2(-\mathrm{j} 0.2)=\mathrm{j} 0.4 \mathrm{mS} \quad(\mathrm{~d}
$$

Question 34. Upper trip level corresponds to the level at which the comparato suming $V_{0}=-12 \mathrm{~V}$, the p.d. across th $8 \mathrm{k} \Omega$ resistor keeps the + input of the comparator below +4 V , hence the output stays at -12 V , until i_{g} increases to ${ }_{\mathrm{g}}^{\mathrm{g}}$
so (b) is correct, but everyone gave (c). About half the entrants gave incorre choices for questions $8,9,18,36$ and 37 . In Q8, I_{e} is $\left(\left(I_{\mathrm{c}} I_{\mathrm{b}}\right)+1\right) I_{\mathrm{b}}=110 \mathrm{~mA}$ and in Q9 zener current varies between 1 mA $\left(I_{\mathrm{b}}=9 \mathrm{~mA}\right)$ and 10 mA so the mean dissi-
pation is $5 \mathrm{~V} \times 5.5 \mathrm{~mA}$. In Q18 the solution is found by equating the increase and decrease in charge first across the input C , to give $v=-E /$ chen across the output C give $E_{0}=M v / 3$. Those who got Q36 wrong gave (e) as the answer but the cor obtained from $2 \times(C \Delta V / I)$, due to curren mirror action, giving 50 kHz . Most en trants realised that the 150 kHz printed fo (d) was intended to read 50 kHz . The , Q37, is one tenth of Other answers were. less frequently wrong, but more consistently so. In the answers to question 11 , emitter current
was invariably given where collector cu rent wasn't. For question 23, it appear that the transformation ratio was taken to be the -square of $X \mathrm{c}_{1} / X \mathrm{c}_{2}$ rather than ($X \mathrm{c}$ $\left.+X \mathrm{Xc}_{2}\right) / X \mathrm{c}_{2}$. As the amplifier of question
27 is matched to the source, actual noise 27 is matched to the source, actual noise power is twice the
makes the noise figure 3 dB , not 0 dB . The Thé venin equivalent circuit is needed for question 33 . For V_{o} to be high, the + input at the comparator must b more positive than -1 V . This means

$$
\frac{R_{2}((10 / 3)+2)}{R_{2}+\left(R_{1} / 3\right)}>1,
$$

from which the answer follows. Only a few got question 22 wrong, but
one that did, Jeffrey Borish of Santa Clara California, wrote to correct his answer saying the question could be a "deliciously wicked trick," depending on whether
c.m.r.r. was taken for the differential or c.m.r.r. was taken for the differential or
single-ended output At the time of going to press the cut-off date for overseas readers hadn't been reached but prizes for the best UK entries
have already been despatched.

Answers to

Test Your Knowledge

1	c	11	D	21	B	31	B
2	B	12	.	22.	B	32	D
3	D	13	A	23	B	33	B
4	B	14	B	24	D	34.	B
5	B	15	D	25	C	35	B
6	c	16	E	26	B	36	D(50kHz)
7	c	17	D	27	D	37	A
8	c	18	B	28	A	38	c
9	c	19	E	29	B	39	C
10	E	20	A	30	C	40	D

Radio observation of the 'active' sun

Solar effects on propagation recorded on home-made apparatus by R. A. Ham
 using similar frequencies recorded an

Fig. 7. The spectrohelioscope. A mirror (top centre) follows the sun and reflects light towards the second unit (bottom right) which in turn passes through the garden roon door off to the left via the lens housing (bottom left).
d.c. amplifier and pen recorder. This instrument, although originally using a slightly different frequency and receiver, was brought into operation in 1968 and has operated for three hours daily ever since. Using a chart recording speed of $7 \mathrm{~cm} / \mathrm{h}$, short-lived solar bursts are easil identifiable.

Sunspots - briefly

 When a long-life sunspot, or group of sunspots, appears on the east-limb of the sun it can be visible for about 13 days bunspots themselves are stationary but, be cause the sun revolves once every 27 days, they appear to move across the surface. Constant observations have shown that main features of the associated solar r f main features of the associated solar r.f.noise, the individual burst, Fig. 3 , which may last for several minutes, and the con tinuous noise storm which may last for days, Fig. 4. These radio waves are often generated by solar flares or prominences,
Fig. 1, but the nuclear waste ejected by the Fig. 1, but the nuclear waste ejected by the
event can take up to 50 hours before reaches the earth and causes some form of atmospheric disturbance.

Sunspot cycle No. 20

 The author's observations began on the rising side of sunspot cycle No. 20 (1965 to 1976 approx.) in June 1968. After a quie start, a large burst of activity from a a group from the 18 th to 21 st were recorded Another period of quiet ended on 17 Octo ber with a 5 -minute burst from a period of solar activity which lasted until 4 No-vember. The main feature of this event was a noise storm which began on the 29th and ended on 1 November: shortly after its termination an aurora borealis manifested and deflected v.h.f. signals from
and, Northern Ireland and Scotland to ards the south of England, proving to the uthor the connection between the sun and terrestrial radio disturbance.
The number of days on which solar oise was recorded increased towards peak in 1971 and then decreased until the new cycle began, Fig. 5. One of the largest noise storms recorded began on 11 No vember 1970 and raged until the 22nd during which time the solar-noise level was apparently constant as the output from th large sunspot group approached central meridian and gradually decreased hereafter.
This was an example of following the otation of the sun using radio. The tele cope's recording pen was at full scale throughout the observations on the 15th and 16 th, which was not surprising because the Daily Telegraph newspaper reported on 1 November that here were four separate anspot groups at the time and the bigge 16th. This solar event upset h.f. communications and one unusual feature was the high atmospheric noise level that was Another major storm, ands after sunse arge sunspot group between 3 and 13 March 1972 was the subject of a special report to the British Astronomical Associa ion (BAAJ June '72) with a special emphasis on the flares which Of the many ind
during the past decad around 08.35 hr dide, a large solar burst rost me 08.35 hr on 3 July 1974 was the recording the radio waves from had bee noise storm on the two previous days so the author decided to check the rising sun by using a 2 m beam and some auxiliar equipment. Suddenly the noise increase 36 MHz and other receivers in use

At this point a communications receiver he long ha for wre used for the noise and for six minutes it over 8 MHz before it slowly faded away back to 136 MHz , Fig.6. Solar noise was also hear at 28.5 and 70 MHz on 3,6 and 28 July. At 07.45hr on 22 August 1976 strong and later at 11.58 hr while the author was using a low-band mobile radiotelephone another big burst occurred and blotted ou the channel for 16 minutes. This burst wa also recorded by the author's radio-tel
scope at 136 MHz The sun often
and having been quiet, apart from two tin bursts, for 18 days it suddenly emitted a 2 minute burst which covered 50 MHz of the v.h.f. spectrum at 13.16 hr on 29 July
1973. Another notable burst began on 1 August at 11.46 hr and for eight minutes the solar noise was strong enough to

fig. 8. The yagi used in conjunction with
the spectrohelioscope.

Recorded noise storms of 1971
to 14 and 19 to 23 Jan 10 to 17 Apr. to 12 May.
4 to 19 and 24 to 28 Jul. 8 to 26 Aug.
6 to 19 Nov.
16 to 9 Dec.
verpower static from a local thunder torm.

Auroral observations Briefly, an aurora manifests when a stream partucles from the sun collides with the ing a temporary ioniar atmosphere causa temporary ionisation which ame flected signal can be identified by the following characteristics: an s.s.b. transmis sion sounds like a ghostly whisper, a c.w nal becomes a low-pithed rasp and panied by many distorted images, all frequently changing as the aurora ebbs and lows. Throughout the past decade Mr C. Newton, Auroral Co-ordinator for the GB, has organized a large network of gnals bouncing off aurora Following a period of large solar bursts n aurora manifested in two phases on 8

Fig. 9. Sunspots photographed at 14.50 hr

Fig. 11. Solar activity near sunspots

March 1970. During the firs 16.47 hr , auroral signals were heard in ocated in England from amateur stations Vales and Holland Ireland, Scotland, econd phase, 18.15 hr to 2 m band. The ore intense and auro to 23.30 hr , was many east-European broadcast operating between 65 and 73 MHz were received in addition to the amateur stations heard during the first phase.
A large sunspot group was responsible or the noise storm which began on 2 August 1972 and became very intense on noise was heard at several radio frequencies and by mid-day it had reached large proportions. It was not surprising that from midnight on the 4th until about 03.00 hr on the 5 th a spectacular aurora
manifested which not only had an umbrella effect on v.h.f. radio signals, but its full glory was visible from southern-Eng-

Fig 10. Clouds of gas from an active region of the sun.

Fig. 12. Sunspots and solar activity
land. Although less intense, the prevailing solar storm continued through the 5 th, 6 th
and 7 th. At 15.00 hr on the 5 th anothe and ch . At 15.00 hr on the 5th another only be 'seen' by radio. Without radio both these events may have gone by unre-
corded, the first could have been screened by cloudy skies and the second was obscured by daylight.
A special watch was kept on the 4 m band during the solar activity from 28
March to 2 April 1973. At 16.00hr on the 1st observers in southern England were rewarded with auroral reflected signals from. the Polish broadcast station at Gdansk, 70.31 MHz , and during the fol lowing hour auroral signals from 14 between 49 and 71 MHz .
The auroral events on 15 September and 13 October 1974 were expected because of the prevailing solar activity around these
two dates. The September two dates. The September event lasted although the October aurora was much shorter, 14.00 hr to 17.15 hr , the first warning came earlier as signals from the CAR-6 satellite crossing the north-pole were affected by the aurora. At 08.41hr on 23 March 1976 a large
solar burst was also recorded by the radiotelescope which Cmdr Henry Hatfield uses at his home in Kent in conjunction with a spectrohelioscope. At noon, Cmdr Hatfield noted that one of the legs of an arched
prominence on the east-limb of the sun was very bright, indicating the presence of a new sunspot. This spot later proved to be very active because from 24 March to 1 April a solar noise storm was recorded and
auroral propagation was reported during the afternoons of 26 March, 1 and 3 April.

The spectrohelioscope

 By the beginning of sunspot cycle 21 Cmdr Hatrield, with his spectrohelioscopet, hadintroduced another tool for the study of solar activity. This instrument consists of wo wave collectors, one a mirror, Fig. 7, and the other a 4-element yagi aerial, Fig. 8, which both follow the path of the sun.
The sunlight is passed through a series of mirrors and lenses to an observatory in the garden room below the house. At the same time radio waves collected by the yagi are Ted to a radio telescope in the same room. mplifier is used to drive an alarm bell when solar bursts are detected.

Sunspot cycle No. 21
It is understood that cycle 21 began in seen along the tail enders of cycle 20. From the author's observation cycle 21 got off to a slow start because solar radio noise was only recorded on 47 days out of 304 be1977. A marked increase in the daily rate of noise began in September 1977 and was still high at the end of July 1978. Out of
\dagger Cmdr. Hatield's spectronelioscope was the subject
of the BBC
television programme
The
the 212 days from 1 January to 31 July solar noise was recorded on 108 days com35 days in 1976, 34 days in 1975 and peak year, 1971. From present record peak year, 1971. From present record
1978 appears to be the peak year, Fig. 5 of cycle 21 therefore it is worth taking a more detailed look at some of the specia events which took place.
On 11 February 1978
On 11 February 1978 the first clear sky for several days enabled Cmdr Hatfield to use his spectrohelioscope and in view of
the high level of radio noise which had been coming from the sun on previous days he was not surprised to see some large sunspots. At 14.25 hr he watched an explosion take place near the upper sunspot in
Fig. 9 and soon after recorded a massive six minute long burst of radio noise at 136 MHz . On 6 March at 12.31 hr Cmdr Hatfield managed to photograph the sola activity, Fig. 10 , responsible for the noise
storm which was in progress using the spectrohelioscope.
Around 12.00 hr on 9 April a burst of radio noise lasting six minutes was heard sweeping across the spectrum from 1.8 on 144 MHz and during the severe noise storm
from the 14th to the 17 th , solar bursts were frequently heard at 28.5 and 136 MHz . The sun was relatively quiet from the 19th to 27 th when suddenly at 13.29 hr on the 28 th an enormous burst of noise lasting 32 minutes occurred which bands for a couple of hours. Some 50 hours later during the afternoon of the 30th an aurora took place which, with the help o another noise storm on 1 May, rolled around until the early hours of the 4th,
Fig. 11. On 25 May Cmdr Hatfield again Fig. 11. On 25 May Cmdr Hatfield again group of sunspots, Fig. 12, which was causing a radio noise storm and it is possible that these spots were responsible for the solar flare at 10.45 hr on 31 May and went with it. Records show that aurora and/or inonospheric disturbance occurred during solar noise storms which manifested on six days
in September, 10 in October, eight in December 1977, seven in January, 19 in February, six in March, five in April, six in May, five in June, six in July 1978, two in April, five in August 1979 and nine in
April 1980. After 12 years of consistent April 1980. After 12 years of consisten conclusion that the 'active' sun is very unpredictable.

Transient intermodulation

 distortionWe are sorry that the tutorial article on transient intermodulation distortion intended for this this
issue (see note in March issue p. 1) has had to be postponed. We hope to be able to go ahead with
it later this year. it later this year.

Literature received

WIRELESS WORLD APRIL 1981
55

Mallory alkaline and mercury batteries, and
Multitlex NiCad rechargeable types are des-
cribed in teaflet from Intel Electronic Compo cribed in a leaflet from Intel Electronic Compo-
nents Ltd, Henlow Trading Estate, Henlow, Brochure on Controlox, a multi-plane, plug
board programming system can be obtained
from Oxley Developments Company Ltd from Oxley Developments Company Ltd,
Priory Park, Ulverston, Cumbria LA12 9 QG Controlox is individually designed to undertake
multi-programme circuit switching or sequen multi-programme circuit switching or sequenc-
ing.

Data recorders SR-30 and SR-50 by TEAC are sold and serviced in the UK by Internation
Recorders Ltd, 92 High Street Berkhamsted, Recorders Ltd, 92 High Street, Berkhamsted,
Herts. HP4 2BL, who can provide a brochur on these 7 - and 14-channel instruments. WWW403

Toroidal transformers in the OT series are based on stack core sizes to reduce manufactur-
ing time and reduce costs. ing time and reduce costs. These custom-buil units are described in a leaflet by Avel-Lindberg
Ltd, South Ockenden, Essex RM15 5TD.
WWW404

The use of the input 1.e.ds of an optical isolator to protect the inputs of an operational amplifier is described in a design note from Norbain
Electro-Optics Ltd Norbain House, Arkwright Electro-Optics Ltd, Norbain House, Arkwright
Road, Reading, Berks. RG2 OLT. WW405

Ancom's range of temperature measuring sen-
sors and assemblies are illustrated and chara sors and assemblies are illustrated and chara-
terized in a leaflet, which can be obtained from Ancom Ltd, Devonshire Street, Cheltenham
GL503LT.

Unilab, makers of science teaching equipment
produce a set of booklets on the use of their produce a set of booklets on the use of the
equipment which can also be used equipment which can also be used in their own
right a e experimenter's guides. A variety o
subjects in physics is covered; microwaves, subiects in pphysics is covered; A marrowaves
microelectronics, geophysics, for example, microelectronics, geophysics, for example, the
booklets costing, on the average, around $£ 1.50$. booklets cosing, on the average, around $£ 1.50$
A ist of 'Notes for Use' an be had from Unilab
Ltd, Clarendon Road, Blackburn BB1 9TA. Ltd, Clarendon Road, Blackburn BB1 9TA.

More on active

cross-over networks

continued from page 43
ricated absorber boxes may provide an im-
provement. These involve membranes of provement. These involve membranes of
bituminous roofing felt with mineral wool in hardboard panels 15 cm deep, the sound mm holes on a 4 cm grid, and approximately 1 m square for the overall panel. The panels, of which several could be needed, are normally mounted on batten attached to the wall and ceiling. This is
however a specialized subject involving however a specialized subject involving
reverberation time measurements and is a separate topic, discussed for example in BBC engineering division report RD1958/28, available in most universit

ARTIFICIAL
NTELLIGENCE
In your January issue Malcolm Peltu presents a
spirited and cogent defence of artificial intelligence as an important area of study. His al-ready-strong case can be strengthened eve urther by the observation that a great deal what is now presented as computer cience has of artificial intelligence.
The contribution of AI to computer science is early work. The programming language LIS was devised by McCarthy and his group to aid their work in AI, and this has had a profound
influence on computer science. The value o recursion in programming was clearly shown by McCarthy's work as well as by that of Newell solver. The LISP language is also a paradig or all the other languages (including PASCAL and ALGOL 68) which allow the constructio Chomsky's pioneering work on the formal re presentation of syntax was undoubtedly stim ated by the attempts to make compute uage, whether for mechanical translation o question-answering systems. In more recent times, interest in distributed rray processors has stemmed, at least in part echniques and their potential application to specific tasks such as the automatic analysis bubble-chamber photographs. The special proerred to as "LISP extensions" certainly embody features which will find their way int with applications i I am surprised that there now seems to be a tendency for computer scientists to dissociate
themselves from AI. This is surely short-sighted in view of the fact that part of today's AI becomes tomorrow's computer science.
A. M. Andrew

Department of Cybermetic

MULTIPLEX KEYING
FOR ORGANS
With reference to the article "Multiplex keying
system for organs" by A. W. Critchley in the January and February issues, may I draw your attention to the fact that this company has mar keted a multiplexing system for pipe organs for early four years.
The system is ap ransmitting all the organ facilities over a single coaxial pair between console and organ. The
constem includes the necessyry system includes the necessary correlation be
tween stops, keyboards and pipes of all ranks at any pitch and between keyboards and couplers at any pitch, thus avoiding the need for multicontact relays and playing keys or the equivale
multiple gates. The customers' requiremen are programmed intor r.o.m., which controls th standardised modules. A solid-state piston capture system is also available.
We also have a solid-state recording system
which records some ten minutes or more of unrestricted organ playing in 32 Kbytes of
r.a.m. - a full performance of the well-known Widor - Toccata uses iust over the capacity. Tape back-up allows permanent retention of an un
limited library, with a C60 cassette holding several hours' playing time. The transmission system has been installed on many organs, large and small, throughout this country and has

and South Africa $L . W$. Ellen

Christie Music Transmision Systems Ltd
Colchester
Essex

THE DEATH OF
ELECTRIC CURRENT
My thanks to Ivor Catt for giving me a good his article "The death of electric current" (December 1980 issue) carefully, and then came the analogies. Memorable things analogies (witin the hot water system), but so dangerous. The theory C analogy succeeded in giving me vivid picture of Catt's travelling wave packe soing out into the world along what I sed
think were insulators, but which I now see are he very opposite. But just a minute, isn't tha he philosophical point from which I started ust back to the wave-particle duality. They're in different places, that's all. I honestly don't know which to call correct and I should like to hear if Catt will swear that nothing that exists is they can begin to speak as if their self-consiste mathematics were the fact. OK Catt, you
maths may be right, and I don't doubt that it more helpful in your field of practical ende vour, but for me the AVO meter theory of predictive power. My money goes on Sprague,
but when I need you, Catt, Ill gladly acknowledge it. In the meantime please don't put m down as a fool because I tend to live my life
close to one side of the duality only. (I never go a shock from an insulator yet.) The reference to the phlogiston theory was a
red herring; that was proved by experiment to red herring; that
be untenable.
F.H.Y. Dawson
Amsterdam
Netherlands
The author replies:
The duality (Theories N and H) inherent in as wave-particle duality. (See for instance D. A. Bell, Wireless World Sept. 1980, page 50 , first para.) As to "They're in different places, that's all," my reply is that the location of a thing is
one of its most important characteristics. As to ". nothing that exists is a particle," it epends what you mean by 'particlc'. I have no sympathy for the billiard ball idea, and no sym-
pathy for the notion of wave-particle duality. pathy for the notion of wave-particle duality
The idea of wave-particle duality could probably only have been concocted by people who
did not know Heaviside's concept of a slab of did not know Heaviside's concept of a slab of
energy current, now called the Heaviside signal
(see Wireless World, July 1979). In these particur matters my view coincides with Einstein's; basic axioms in physics will turn out to be. The
 them; the field, in Farada's and Maxwell's sense,
could possibly be, but it is not certain." "Quantum Mechanics and Reeaility. In what fol-
lows I shall explain briefly and in an elementary lows I shall explain briefly and in an elementary
way why I consider te methods of fuantum mechanics fundamentally unsatisfactory.,",
(Max Born, "The Born-Einstein leters", (Max Born, "The Born-Eisstein letters", pub.
Macmillan 1971, pp. 164, 168.) The most prominent feature of the maths of
"OK Catt" is its virtual non-existence. E-m "OK Catt" is its virtual non-existence. E-m theory was buried in nonsensical, complex
maths a long time ago, and I am extricating it.
(See "Maxwell's equations revisited", Wireless maths a long time ago, and I am extricating it.
(See "Maxwell's equations revisited", Wireless
World, March 1980, pp 77-78.) (I would get a real shock if I got a shock from (I would get a
a conductor.) Ivor Catt
St Albans

COMMERCIAL

 BROADCASTINGIt is silly to speak of freedom of choice where revenue. It is equally silly to pretend that the best of anything is that which is desired by the majority, who clearly desire pools, dirt as repretune after pop-tune regardless of quality; good, bad or indifferent. This morning's paper says that peak viewing is soap-opera. And pre-
sumably the finest wartime musical work was sumably the finest wartime musical work was
"Roll out the Barrel" if popularity is the criteIt was as long ago as Hume or IS, Mill It was as long ago as Hume or J. S. Mill that it
was first pointed out that rigid democracy led as surely as any other system to suppression of minority interests. Certainly if longer hours mean more dreary episodes of Coronation Street nd the like, more samey westerns and Ameri-
an cop-and-robber sagas and long-since-dated ann cop-and--robber sagas and long-since-dat
films, then they can have my licence back. And what is it all for? To try to dupe more

people into buying, at ridiculously inflated people into buying, at ridiculously inflated tastes, as Lawrence Durrell soadmirably put it, | like a urine sample from a mule. To make mat- |
| :--- |
| ters worse you would think from their attitudes | that the advertisers were transmitting the word of God. In fact we would all be much better off they were all strangled.

F.V. Bale
Maidenhead, Berks

With reference to your leader of the December number of salient points. First, you state that the BBC has already started a course of competing for large
audiences on terms set by the commercial broadcasting networks. It is not -it is competng on the same terms as always, but using changing tastes and opinions of the present day. That some find this material displeasing is a
consequence of the more depressed financial tate of the country as a whope, not inst of the
BBC itself. There may not exist a desirable level

WIRELESS WORLD APRIL 1981

be prepared by assembling the manual for each module, and adding a section on the complete
system.
O'Con 2
pearing micro raises the question of the disapmany microprocessors have appeared, then many microprocessors have appeared, then
disappeared just as rapidly, there are three families that have been with us for many years, and look like being around for a long time to come.
These are the 6502 , the $6800 / 6809$ and the These are the 6502, the 6800/6809 and the
8080/8085. Not only have the manufacturers taken care to see that it is a simple matter to change the software for new members of each
family, but there is considerable support in the amily, but there is considerable support in the
form of hardware and software, both from the semiconductor manufacturer and also from a
large number of independent suppliers. I large number of independent suppliers. I have
deliberately left out the $Z 80$ for two reasons deliberately left out the $Z 80$ for two reasons-
there is little software available specifically for the Z80 and in most applications they run 8080
code and so do code and so do not make use of all the extra
facilities, and their future is likely to depend very much on how fast the $Z 8000$ is accepted. The $Z 80$ might simply be phased out and re-
placed by the 40 -pin version of the $Z 8000$ placed by the 40 -pin version of the $Z 8000$.
The moral from this would seem to be you are going to make your product in millions then do what you would do for any other product, i.e. specify an interface that is indepen-
dent of the type of microprocessor used, place an order for the cheapest components from one or two reliable suppliers, and make sure you
buy enough for future spares. If the product buy enough for futures spares. If the product
sells so well that you have to make another 10 sells so well that you have to make another 10
million, then it won't matter if new software is needed. After all, a black box is a black box is a fyou can't get inside it to repair or change it, in you can thatter whether it it a a a micropropocessor, a
does
state machine or rand tate machine or random logic? What is importhe replacement unit cost
On the other hand, if you are only going to produce small quantities you had better stick to
one of the above three families, one of the above three families, and design
around the one which has the best overall hardware and software support available to you locally, and which has a range of readily avail-
able modules which meet your needs. Although these modules look expensive at first they turn out to be far cheaper than rolling your own. You have to make a large quantity to recover the
development and proving costs, even if you follow the recommended practices and get it right the first time. Designing a unit which works correctly is straightforward - designing
unit which works correctly and can be produced economically requires considerable extra skill and experience.
sed by Zieads me to comment on the design steps 4sed by Zissos and Valan in part 5 (October,
1980). They advocate designing the hardware first then the software, then repeating these
steps until a satisfactory design is steps until a satisfactory design is obtained. In
each of the failed designs that I have investigated the designers have followed this approach. I cannot stress too strongly that these two steps nust be carried out concurrenty, and in fact terwoven areas that must be considered in parallel. These are: 1. Hardware design. 2. Software design.
production.
Thedician.
Tho areas are often left till the prototype is completed, and then it's back to the
drawing board for some very expensive changes We should follow the Smallpiece philosophy of "Get it right the first time." Test points, both for production testing and field servicing must
be built into the hardware and software during be buil ino the hardware and software during making a commitment to including signature
analysis in every product. Similarly, what is the duced economically without redesign and the consequent delays in getting your product into consequent delays
the market place? After all, one of the big incentives to using microprocessors is that their use
can substantially reduce the develonemer can substanaulat.
for the product.
As O'Connor said "Microprocessors are only
cheap if they are cheap to use; if the way in cheap if they are cheap to usesessors if the way in
which they are used brings crippling costs, they which hey are used brings crippling costs, they
are extraordinarily expensive, Alan M. Fowler
North Baluyn North Baluyns
Victoria, Australia

DESIGNING WITH
MICROPROCESSORS
I would like to thank D. M. Vaidya for his letter
in the March issue (p.62) pointing in the March issuu (p .62) pointing out the error
in our Table 3 (p.73) of Part 6 of our series in our Table 3 (p.73) of Part 6 of our series
"Designing with microprocessors" in the De.
cember 1980 issue. We understand that the edicember 1980 issue. Whe understand that the edi-
tor hopes to publish a corrected versin in tor hopes to puble.
next available isue.
Regarding the second point, we must disagree on this. We have written numerous programs
using different microprocessors which show the using different microprocessors which show the
generality of the approach that can be achieved generality of the approach that can be achieved
with these different devices. This will be demonstrated in detail in an article which will
follow later in our current series. follow later in our current series. Meanwhile,
any readers who would like to have this information in advance are welcome to write to us at the address below.
D. Zissos and LL Valan
Department of Computer Science
University of Calgary
Calgary, Alberta T2N IN4
THE TWINS PARADOX OF RELATIVITY
Alex Jones's letter (January) contains a funda-
mental flaw which I feel should be corrected. menta ilaw wielative ageing in the be corrected. The relative ageing in the Twins Paradox is
not dependent on the accelerations at the start not dependent on the accelerations at the start
and finish of the iourney, because the theory has it that, with the same accelerations, doubling
the spatial distance of the trip doubles the age
difference at the end (with short acceleratio This is certainly the tot journey duration). This is certainly the impression Einstein
wished to impose on the world, and it is backed wished to inpose on the world, and it is backed
up by the whole series of text-books since. The effect is quite clearly one of Special Relativity
not of General Relativity. not of General Relativity
If, as he suggests, the
If, as he suggests, the results of SRT are only "apparent", but the Twins Paradox experimen-
tally resolves in Einstein's favour, as numerous
text text-book writers would have us believe, then
Jones's "coincidence" is not only remarkable but miraculous. but miraculous.
L. $\begin{aligned} & \text { F. Higgins } \\ & \text { swindon Wilts }\end{aligned}$

WIRELESS WORLD'S
70th ANNIVERSARY
If I give a brief record of my association with it has given me to be invited by the pleasuren it has given me to be invited by the present
editor to say a few words on the 70 th annivereditor
sary.
Look
an adv
Looking for a career in journalism I answered
an advertisement by the Marconi Compary an advertisement by the Marconi Company for
an editorial assistant which stated "some knowledgeo af wireless would be an advantage",
As I already had a Post As I already had a Post Office Experimenta had no difficulty in securing the iob. I found mysself on the editorial staff of the WiVreless World
with the launching with the launching of the first number. With a
commission in the Royal Engineers, the 1914-18 commission in the Royal Engineers, the 1914-18
war took me to Mesopotamia and Persia en gaged on interception and direction finding. The Marconi Company kindly kept open the
editorship of Wireless World for me on my return editorship of Wireless World for me on my return
after demobilisation and I continued with the journal as editor and then as director and man
aging editor until my retirement in 1962 . aging editor until my retirement in 1962. Wrapped a career which has been so inth the story of the Wireless Worly wrapped up with the story of the Wireless World
I welcome with enthusiasm its achievement of
70 years and, under the control of our present 70 years and, under the control of our present
editor, we can look forward with every editor, we can look forward with every confi-
dence to the future I dence to the future. 1 am proud to have been
associated with a staff which has created Wireless World over the years.
Congratulations and every good wish for the future.
Hugh Pocock
London NW3

Dividing by fractions

Digital frequency synthesis using non-integral frequency division
by Gilbert Pearson, Australian Broadcasting Commission

This circuit allows a direct division from PAL/625 sub-carrier frequency to twice-line frequency, or a direct multiplication from twice-line to subboth cases using only digital counters and a single, phase-locked loop.
Present methods require additions or subtractions in the frequency domain which in turn require linear stages. frequency from line frequency has been built and found to work satisfactorily. The greatest use for the circuit may well be found in synchronizing pulse generators, where its low cost and reliability
should prove an advantage. But the principles described are applicable to any frequency synthesis problems where fractional divisions or

The colour sub-carrier frequency as used in the 625/PAL colour television system i $4,433,618.75 \mathrm{~Hz}$. It is derived from the relationship
$2833 / 4 \times$ line frequency +25 Hz
i.e. $2833 / 4 \times 15,625+25 \mathrm{~Hz}$
The addition of the 25 Hz makes synthe sis of one frequency from the other difficult. While straight divisions or multiplications can be done simply, with
integrated-circuit dividers and phaselocked loops, the addition or subtraction of frequencies, such as 25 Hz , requires precision phase shifters and tuned stages. A common technique used in the gener-sub-carrier (SC) in a sync. pulse generato is shown in Fig. 1 .

New method
The two frequencies can be broken into lower multiples, as shown below
$\begin{aligned} \mathrm{SC} & =4,433,618.75 \mathrm{~Hz} \\ & =11 \times 25 \times 25 \times 644\end{aligned}$
$=11 \times 25 \times 25 \times 644.89 \mathrm{~Hz}$
$2 \mathrm{LF}=31,250 \mathrm{~Hz}=2 \times 25 \times 25 \times 25 \mathrm{~Hz}$
$\begin{array}{ll}\text { Thus, } & \frac{\mathrm{SC}}{11 \times 25 \times 25 \times 644.89} \\ & =\frac{2 \mathrm{LF}}{2 \times 25 \times 25 \times 25}=1 \mathrm{~Hz} \\ \text { i.e. } & 2 \mathrm{LF}=\mathrm{SC} \frac{25 \times 2}{11 \times 644.89}\end{array}$

Fig. 1. Typical synthesizing technique.

Fig. 2. Twice-line frequency (2LF) derived from sub-carrier frequency

$$
=S C \frac{5}{11} \times \frac{1000}{64,489}
$$

It must be pointed out at this stage that 64,489 is prime number and thus cannot be broken up further. From the above, 64,489 , multiply by 1,000 , divide by 11 multiply by 5 to generate twice line fre quency. The problem with this, however and it is extremely difficult to stabilize a phase-locked loop (p.1.1. hereafter) with an put frequency which is so liw. An idea olution would be a divider whow
i.e. $\quad 2 \mathrm{LF}=\frac{\mathrm{SC}}{2.2 \times 64.489}$

A reasonable first reaction is that this is impossible, and strictly this is correct. ble counters, to achieve on average a frac ional division by dividing by two or more umbers in an appropriate ratio. xample a division of 4.5 could be per division of 4.333 could be performed by dividing by 4 and 5 in the ratio of 2:1 espectively. Of course, the problem with such an arrangement is that the output xhibits a large amount of jitter. This cat hase-locked loop and will be dealt with later.
If we assume for the moment that both 64.489 and 2.2 dividers are possible, a mements as shown in Fig. 2 and 3 an
be used to generate 2LF from SC and viceversa. In the schematic in Fig. 2, 2LF is derived directly from the two dividers in cascade. However, this output has large amounts of jitter, so the p.1.1. and dividecircuit would seem particularly useful in a sync. pulse generator where a suitable p.1.1. is often included anyway for the purpose of genlocking. Firstly, in conjunction with digital circuitry, it provides the means of multiplication. Secondly, by selecting the time constants of the p.1.1., it serves to prevent the jitter of the dividers being reflected on the

64.489 divider

As described in the previous section, frac tional divisions are obtained by dividing by two numbers in a suitable ratio. In the case of 64.489 , a solution is to divide by 64 and 65 in the ratio of $511: 489$. There are many
ways in which such a ratio can be achieved, but the best one is that which gives the least low frequency jitter. To do this the divisions by 64 and 65 must as near as possible be evenly distributed. of the divider, background on the programmable counters is necessary. The 9310 is such a counter, in which it is possible to arrange a division of any number from 1-10 by programming on pins 3 to 6 . It is further possible to cascade the coun

Fig. 3. Sub-carrier frequency (SC) derived from twice line frequency.

Fig. 5. Complete 64.489 divider

ters and so arrange a division of an mber. For our particular purpose a diviFig 44 and 65 can be achieved as shown sion is shown at the bottom as well as the logic required to switch between the two divisions. When point A is high a division of 64 is performed and a division of 65 when low.
If, as in Fig. 4, the output of the divider is divided by 2 and fed to A , the result will ly divide by 64 divider will alterna ge, a division by 64.5 . The output is arer hown to be fed back. The output is also he PE terminal of the counters, This is requirement for this particular counter The circuit of Fig. 5 is an extension that in Fig. 4. There are five 9310s designated XI-X5, integrated circuits X1 and X2 performing the same function as those in Fig. 4. As in Fig. 4, when point A goes there being a separate division by 2 , this is performed by X3, itself a programmable divider. X3 and X4 are programmed to
divide by 90 and 92 and, since both are even numbers, the Q_{0} output of X3 will, always alternate between 0 and 1 . As stated previously a division of 64.5 is performed by the circuit shown in Fig. 4.
This is close to the required division of 64.489. If 11 of the divide-by- 65 s " $\div 655$ ") in 1,000 are changed into " -644 " the correct ratio of $511: 489$ is obtained. This occurs in the circuit of Fig. 5 . of $6: 5$. This means that they divide by $90.9090 \ldots$ or $1,000 / 11$, and point C will thus have eleven pulses for 1,000 occurring at the clock of X3. Furthermore, these pulses derive from the terminal count of
X 4 and thus at a time when O_{0} of X 3 is high and when B would be low, normally giving $\mathrm{a} \div 65$ instruction. The 'high' on C thus overrides this through the OR gate and forces a " $\div 64$ " instead. The correct $\begin{array}{r}\div 90, \\ 9310 \\ \hline\end{array}$ but it was used in this case to make all the types standard. When X 5 is programmed

Fig. 4. Alternate divisions of 64 and 65.

WIRELESS WORLD APRIL 1981
as shown, it will divide by 11 and its Q_{0} cept at the maximum count, when it will give two consecutive 1s. Q_{0} will thus be high and low in the ratio of 6:5. It is this point, point D , that is used to command
the $\div 90 / 92$ counter. To summarize, X
or 65 , depending upon the command appearing at point A . This point will go high (" $\div 64$ ") when either B or C are high. B alternates between low and high and
thus, taken in isolation, would alternately command division by 64,65 . Point C goes high for just 11 of 1,000 pulses appearing at the output and it does this when B is low, instructing a " $\div 65$ ". On these 11
occasions in 1,000 then, a " $\div 65$ " is converted to a " $\div 64$ " making the ratio of the two divisions 489:511 instead of $500: 500$ or 1:1.
Jitter. If the divider is given an input of
sub-carrier frequency it has sub-carrier frequency it has the following itter components:

Frequency	Jitter (ns-pp)
34.35 kHz	226
756.25 Hz	111
378 Hz	1.24
68.75 Hz	1.13

The first can be easily understood, since the divider for most of the time divides output phase oscillates about a true mean with a period of two output cycles. Since with a SC input the output will be 68.75 kHz , this first jiiter frequency must be half this, 34.375 kHz . Its peak to peak input frequency (Thereafter)
The remaining components are best des-

Fig. 6. $756.25 \mathrm{~Hz}, 378 \mathrm{~Hz}$, and 68.75 Hz jitter

Fig. 8. Complete 2.2 divider.
cribed with reference to Fig, 6(a). The horizontal axis is calibrated in periods of he output of the divider ($1-1,000$) and the eral in its output phase, such that a 34.375 k ne would be horizontal. The Beginning at point A, the divider divides alternately by 64 and 65 and since this is not quite the required division the output phase steadily deviates from the mean as seen by the slope of line A X. Referring to the previous section, instead of the 89 and
90 th divisions being 64 and 65 as before, they are both " $\div 64 \mathrm{~s}$ " resulting in an abrupt correction in the output phase (XB). The count sequence from B-C is imilar, except that the 91 st and 92 nd divi-
sions are altered to both be " $\div 64 \mathrm{~s}$ ". Thus sions are altered to both be " $\div 64 \mathrm{~s}$ ". Thus
$\mathrm{A}-\mathrm{B}$ and $\mathrm{B}-\mathrm{C}$ give slightly different average divisions. The counts from C-D, E-F, G$\mathrm{H}, \mathrm{I}-\mathrm{J}$, and $\mathrm{K}-\mathrm{L}$ are identical with A-B, while the alternate ones, D-E, F-G, H-I and J-K are identical to B-C. It must be noted that there are six of the former sequthe previous section. After point L, the entire sequence A-L repeats itself. By a quantitive examination of the plot of Fig. (a) it is possible to calculate the various peak to peak values.
Alternate divisions of 64 and 65 clearly give an average of 64.5 . This differs from the final required average by $64.5-64.489$. That is 0.011 of an input period (T). This

Fig. 7. Phase-locked loop used for synthesis of sub-carrier from twice line frequency.

rror repeats itself for every pair of divierror repeats itself for every pair of divi-
sions and is accumulative. After 88 divisions, or 44 pairs of divisions, from point A, the accumulated error will be $44 \times .011=484 T$ at point X . When the cor-sion-by-64 a step of 64.0 . $64.489=-0.489 \mathrm{~T}$ is made.
It is clear that the sawtooth plot AXBYC \rightarrow represents the next most significant iitter frequency. Eleven cycles of this jitter appear within 1,000 divider output

$$
\frac{68,750 \times 11}{1.000}=756.25 \mathrm{~Hz}
$$

Its peak to peak excursions will be 0.489 T ,
 $0.489 \times 226 \mathrm{~ns}=11$ ns
point X and a correction is made ($\mathrm{X}-\mathrm{B}$) of -0.484 T when a double division by 64 takes place. The correction therefore
"overshoots" by an amount of 0 . overshoots" by an amoum of ion Y an error of $45 \times 0.011=0.495 T$ accumulates. A double division of 64 occurs from Y to C bringing a correction of -0.4891 . In this case, the correction is insufficient and "un $\mathrm{C}-\mathrm{D}$ is identical to $\mathrm{A}-\mathrm{B}$ and $\mathrm{D}-\mathrm{E}$ is identical with B-C, the process of "overshoot" undershoot" continues, the jifter wave form of Fig. 6(b) being the result. It is
continued on page 76

Phase measurement with an oscilloscope

Avoiding the difficulties of Lissajou figures and time estimation by I. D. MacArthur

A method of measuring phase angle between two sine waves of the same frequency is described, using a double-beam oscilloscope, which is bandwidth of the oscilloscope.

The classical method of measuring phase is by Lissajou figures, as in the example of Fig. 1, a method which suffers from ellipse must be accurately aligned with the cross wires of the graticule and then measurements made against the graduations, hich are usually on the centre lines themselves. This is tricky and prone to erro sear 90° or 270°, and the gain of the hori ontal amplifier is usually limited, makin impossible to "open out" the ellipse with mall signals. The maximum frequency a which measurements can be made is als even a very good modern oscilloscope may be limited to about 200 kHz before the elative phase shifts in the vertical and horizontal channels become unacceptable. It must be stated though, that the Lissa-
ou figure has one big advantage in that it is very useful for checking zero (or 180° phase shift when the ellipse is closed and ny small departures are easily visible. Another method, shown in Fig. 2, is to waveforms. This method is still probabl the best for "a quick look" but has the disadvantages that the two waveform must be aligned with the centre of the graticule, and that the oscilloscope time
base must be accurately triggered. One must also choose between the chopped and alternate modes, which both have disad vantages. On some oscilloscopes it necessary to provide an external trigger

Sum-and-difference method Here the two signals are displayed as in th zero-crossing time-interval method, but it is unnecessary to have the timebase accusome cases. Measurements can sometimes be made in the presence of significant amounts of noise.
The procedure is as follow

- Adjust the gain of the two channels to give equal-amplitude signals approxi-
mately half the screen height (to allow fo dispiaying a $2 \times$ signal). The exact amplitude and gain settings are unimportant and the time base need not be synchronized. - Switch the channel selector to $\mathrm{A}+\mathrm{B}$ (al
gebraic add) and record the peak to peak

Fig. 1. Phase measurement by the Lissajou figure method. This is difficult, since the
graduations on the cursor are usually on t the centre line.

fig. 2. The zero-crossing method, which can be tricky to set up symmetrically on the screen

Fig. 3. Graph of diff./sum plotted against
phase.
amplitude of the resulting sine wave (the

- Sum voitch the channel selector to A-B invert one channel) and record the A - (or peak amplitude of the resulting sine wave (the difference voltage)
- Calculate the phase angle from

$$
\Phi=2 \tan ^{-1} \frac{\text { difference }}{\text { sum }}
$$

or use the graph in Fig.
When using this method one must un derstand its limitations. When making that probes are maly cons it is vit

est done by connectung both probes to one signal and adjusting for equal ampli ades. The accuracy of the method deterirates as Φ approaches 0° or 180°. If the voltage measurement accuracy is $\pm 5 \%$ $\Phi=90^{\circ}$, reducing to about 10.5% at $\Phi=12^{\circ}$ or 168°. Accuracy will also be impaired if significant distortion of either sine wave exists: it is useful to synchroniz Whe time base and check the waveforms. of phase measurement will never replace an accurate phase meter or vector volt meter in the eyes of those who can afford hem, it does offer a useful techniqu instruments, particularly when the signal are noisy. I have used the technique on

"Tektronix Value understands: for míhuey. We sell the finest lowicost oscilloscopes in the world.
 The complete range of

low-cost oscilloscopes avail able from Tektronix offers for money.

Because everyone needs a slightly different performance n either band-width/ sensitivity or extra control functions, we offer a range with different specifications.
There are 4 dual-trace oscillos-
copes to choose from in the Telequipment D1000 Series family, with 10 or 15 MHz
bandwidths. band widths.
And there And there are 5 different copes ranging from a 15 MHz single trace oscilloscope to a 35 MHz dual-trace oscilloscope with Delayed Sweep.
All our oscilloscopes are thoroughly pre-tested to are
he high standards that go with our name. The result is solidy built oscilloscopes
which are not only easy to ortrate and maintain but also represent the most reliable buys on the market. The T900 Series is sup ported by a full range of accessories including battery power packs,

toscilloscopes are sold \& Ptre.............................. Please send me more information on romument Oscilloscopes - Series Oscilloscopes Name Postion Address

flephone

Teltranix International Inc uropean Marketing Centre osstuus 827, 1180 AV Amstelveen
Tektronix

TOP QUALITY REBUILT TV TUBES

Rebuilt on the most modern equipment to original manufacturers' specifications

No.1. April, 1911. \begin{tabular}{c}
Subscription,

3 perannum.

nost free.

Price 2d.

Post Free 3d.
\end{tabular}

In 1911, the name of Marconi was almos synonymous with 'wireless': marine wire ferred to as 'Marconi operators'. Th growing profession of operating Marcon stations on board ship demanded a magazine, and the Marconi company responded in April 1911 with The Marconigraph, operators scattered worldwide and of developments in wireless technique. Two years later, for reasons which have been aired before by writers more directly con cerned with the event, The Marconigraph
became The Wireless World and embarked on its declared life's work of being "of use and interest" to a rather wider fraternity than had been the case in its previous exis tence. Sticklers for detail may, with some
justification justification, point out that $W W$ is not 70
this month, but 68 . We feel, however, that the two larval years should count towards the total for, while laying no claim to be roseate, we think $W W$ quite as sweet a The Marconigraph.
While the new science and technology was at first naturally associated with ships communications, there is a remarkably close parallel to be drawn between th development of radio (and later electron ics) and aviation. Both technologies were
emergent in 1911 (Bleriot had landed at Dover only two years earlier and Fleming's two-electrode valve was only seven years old), both were to advance rapidly in the two wars and have each, over the years, called for specific development in the was all, but even in the early days, direction finding and even radio landing aids were seen. The emergence of radar techniques and navigation systems changed th ways in which both civil and military air-
craft were operated and even the design of some of them. Looking at it the other way round, the demands imposed on radio and electronics by military aviation in two wars and by an enormous expansion in civil air avionics to a degree where only marginally-
stable aircraft become docile, but agile and where landing aids are capable, craft in zero visibility, but getting it to th terminal building as well. Electronics and aviation are now so inextricably interwo ven that airliners could hardly be operated aircraft would be unrecognizably different

Wireless World,

 1911-1981
From crystal detectors to microcomputers in 70 years

Wireless World has always reflected this se of electronics, beginning with the wir eporting Lorenz instrument landing systems in 1935 , gathering a whole mass of newly released radar information immediately post-war and continuing to report on air communication and navigation when
the information is "of use and interest" to the info
Our two enduring interests over the years have been radio and television broad casting and reception, and the high-qualit reproduction of sound. A great many of
the leading figures in high fidelity have written in $W W$, and continue to do so, on theory and practice - an aspect perhaps best demonstrated by the publication of designs for D. T. N. Williamson's valv amplifier just after World War II, which
set a standard to judge the rest by. People still write in to ask for reprints of these articles.
The Williamson standard was and is upheld by writers such as Jack Dinsdale, Linsley Hood and many others on the
practical side of our content, and contribuors of the calibre of Peter Baxandall, and the immortal Marcus Scroggie (Cathode Ray) have educated thousands of readers in the art of electronics.
Coverage of television began with Baird's first crude experiments, although he tone of some of our reports was a little 1968 with the publication of one of the first designs for a home-constructed mono hrome television receiver (deflection yo and line-output transformer both being Walter Cocking, who made an enormous contribution to the standard of our practical articles over many years. The two reeiver designs illustrated some of the easoning behind WW projects, in that of acquiring the receiver, or whatever was eing built. One of the reasons for pub shing them was that such a series of art les is undeniably the best way of explaining the operation of equipment. Even if the text is valuable in its own right.
In those days, of course, there were no integrated circuits. Circuit design was no ens-flecuive deployment of the va range of modules one can now select from, ind closed doors, its outcome being en apsulated in plastic. Integrated circuit have brought with them enormous oppor unities for technical progress, but an unfortunate effect from a journa's point of
view is that an article describing a piece of digital equipment often reads a little like a knitting pattern. It is not as easy as it used to be to read such articles in isolation. Nevertheless, we have no intention of
abandoning the ground rules laid down 70 abandoning the ground rules laid down 70
years ago, that Wireless World should entertain, educate and be of use to the new generation, as well as their elders. It doubtul that G. Marconi would recogniz his grown-up brainchild, but we do hop

Designing with microprocessors

7 - Wait/go systems
by D. Zissos, Department of Computer Science, University of Calgary, Canada

Previous articles have described the
synchronization problem and the most widely used solution involving software wait loops. In this article the wait/go concept is explained and
step-by-step procedures for the design and implementation of wait/go systems are described. The design steps are illustrated by means of a fully worked out example.

The synchronization problem of microprocessors and the most widely used solution involving software wait loops have been described in previous articles. In this artiwhich involves keeping the microprocessor in animated suspension while the peripheral is responding. Systems using this olution are easy to design, program, implement and maintain.

The wait/go concept

Let us assume that we have a microprocessor which automatically enters the wait state when an $\mathrm{i} / \mathrm{instruction} \mathrm{is} \mathrm{being} \mathrm{exe-}$ cuted. Let us further assume that when in the wait state it generates a logic 1 on wait
terminal w, and that it exits the wait state when the signal on go terminal is pulled high $(g:=1)$. The block diagram and state diagram of such a microprocessor are shown in Figs. 1 and 2. If we were to
activate the peripheral with the 0 to 1 activate the peripheral with the
transition of the wait signal w and keep the microprocessor in the wait state until the peripheral had fully responded, we would clearly have no synchronization problems. Furthermore, if the peripheral is an actiontwo wires, as we show next.

The two-wire interface
Our starting point is the block diagram of a wait/go system shown in Fig. 3. The sigmeaning:
Signal w: A ' 1 ' on this terminal (the wait line) indicates that the microprocessor has entered the wait state
Signal g: A signal transition from 0 to 1 on this terminal (the go line) puts the
microprocessor out of the wait state. Signal a: A signal transition from 0 to 1 on this line triggers the peripheral into action. Signal r : While the peripheral is respond-
ing $r=0$. When the peripheral has fully ing $r=0$. When the peripheral has fully possible when $r=0$.

WIRELESS WORLD APRIL 198

AFig. 6. The two-wire wait/go interface.

- Fig. 7. Block diagram of the wait/go logic. as shown in Fig. 5 (b). Fig. 6.

Advantages

Wait/go systems are are everyday concepts, not requirin specialist knowledge
Easy to design. devices it consists of two wires.
Easy to implement - because of uncom hardware.
Easy to
minimal bility.

Wait/go logic

 of a relatively simple logic circuit, the nal, that is to the outside world.9. $I^{Q_{1}}$

A suitable internal-state diagram of a circuit to implement the above interface is steps to its equivalent sting the reduction (a) allows its three rows to merge into one,

By direct reference to the reduced state

$$
\begin{aligned}
& a=w r+w \bar{r}+(\bar{w} \bar{r}=w \\
& g=\bar{w} r+w r+(\bar{w})=r
\end{aligned}
$$

The corresponding circuit implementa tion consisting of two wires is shown in

Easy to understand. The 'wait' and 'go' straightforward and presents no difficulty Specifically, in the case of action/status Easy to maintain - because of their relia-

Although present-day microprocessors are not designed to operate in the waitg wait/go logic, the block diagram of which is shown in Fig. 7. Its function is to look for i/o instructions with wait/go addresses, denoted by A_{w}, and to put the micropro-
cessor automatically into a wait state when such an instruction is detected. At this point it passes exit control to the go termi-

Δ Fig. 8. State diagram of the wait/go logic
for the Intel 8080 .

Fig. 9. Circuit implementation of the A
The design and implementation of
wait/go logic is straightforward, as we wait/go logic is straightforward, as we demonstrate by means of the following
example.

Wait/go logic for the Intel 8080
The m.p.u. signals of the Intel 8080 were described in the first article (May 1980 issue). Reference to these signals shows into the m.p.u. registers in timeslots into the m.p.u. registers in timeslots
M1.DBIN and the following DBIN respectively. It follows that we can identify an i / o instruction by simply determining whether the signals on the data bus in time
slot M1-DBIN are 11010011 or slot M1-DBIN are 11010011 or not IN and OUT ${ }^{2}$. Similarly, the wait/go addresses are identified by looking at the data bus with the following DBIN signal. A suitable state diagram is shown in Fig. 8.

By direct reference to it, we obtain
$\begin{aligned} S_{A} & =S 1 \cdot A_{w} \\ & =A \cdot B \cdot A_{w} \quad \text { therefore, } \mathcal{f}_{A}=B \cdot A_{w}\end{aligned}$
$\begin{aligned} R_{A} & =S 3 \cdot \mathrm{~g} \\ & =A \cdot \bar{B} \cdot g \quad \text { therefore, } K_{A}=\bar{B} \cdot g\end{aligned}$
$\begin{aligned} S_{B} & =S 0 \cdot M 1 \cdot I / 0 \\ & =\bar{A} \cdot \bar{B} \cdot M 1 \cdot I / 0\end{aligned}$
$R_{B}=S 1 \cdot \bar{A}^{\text {therefore, }} \mathscr{J}_{B}=\bar{A} \cdot M 1 \cdot \mathrm{I} / 0$
$\begin{aligned} R_{B} & =S 1 \cdot \bar{A}_{z}+S 2 \cdot \text { WAIT } \cdot g \\ & =A \cdot B \cdot \bar{A}_{w}+A \cdot B \cdot \text { WAIT } .\end{aligned}$
$=A \cdot B \cdot A_{w}+A \cdot \bar{B} \cdot$ WAIT $\cdot g$
therefore, $K_{B}=\bar{A} \cdot \bar{A}_{w}+A \cdot$ WAIT $\cdot g$ Clock $=(S 0+S 1) \cdot D \operatorname{DBIN}+(S 2+S 3) \cdot \phi 1$

$$
\begin{aligned}
& =(\bar{A} \cdot \vec{B}+\bar{A} \cdot)_{1} \cdot \text { DBIN }+(A \\
& B+A \cdot \bar{B}) \phi 1=A \cdot \text { DBIN }
\end{aligned}
$$

$$
\begin{gathered}
B+A \cdot \bar{B}) \phi 1=\bar{A} \cdot \text { DBIN } \\
+A \cdot \phi 1
\end{gathered}
$$

$\begin{aligned} \text { Ready } & =S \bar{A} \bar{B}+\bar{A} B=\bar{A} \\ & =\bar{A} B=\end{aligned}$
$\begin{aligned} w & =S 2+S 3 \\ & =A B+A \bar{B}\end{aligned}$
$\begin{aligned} & =A B+ \\ & =A\end{aligned}$
The corresponding circuit implementation
is shown in Fig. 9 .

A design problem: PRINT
The problem is to design and implement a
wait/go system that would allow the prowait/go system that would allow the programmer to produce a hard copy of data,
which is stored in consecutive memory locations.

Solution

As explained in the previous article the first three design steps are independent of the microprocessor and therefore common o both solutions.
tep 1: aim of the design. The aim of the ystems. Step 2: device characteristics. As
specified. specified.
Step 3: system design. The block diagram of our solution is shown in Fig. 10. Its
step-by-step operation is flowcharted in Fig. 11. As in the case of the test-and-skip solution described in the previous article, we shall use index addressing. Addressing modes were described in Part 3 in the
August issue. August issue

Table 1: Hex listing of the PRINT problem when implemented using the wait/go mode and the Motorola 6800.

Hex address	Hex listing	Mnemonics	Comments
0300	CE	LDX	Load index register with line
01	20		40 on page 20 - location of the
02	40		first byte to be printed.
03	86	LDAA	Load acc. A with block
	n		length (n)
05	97	STAA	Copy acc. A (n) into memory
$\begin{aligned} & 06 \\ & 07 \\ & 07 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$		location (line 10 on page 20) to be used as a counter
$\begin{aligned} & \text { M1: } 08 \\ & 09 \end{aligned}$	${ }_{0 B}^{27}$	BEO	Branch to M2, if $\mathrm{n}=0$ - forward 11
0 A	A6	LDAA	Copy into acc. B next byte
OB	00		to be printed
0 C	B7	STAA	PRINT - printer address 1000
$\begin{aligned} & \text { OD } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 10 \\ & 00 \end{aligned}$		
OF	08	INX	
10	7A	DEC	Decrement byte count (held)
11	20		in memory location 2010)
12	10		
13	20	BRA	Branch to M1 - back 13
14	F3		
M2 : 15	3 E	WA1	Stop

Fig. 10. Block diagram of the PRINT problem.

WIRELESS WORLD APRIL 198

Fig. 12. Programming model for the PRINT
problem using the M6800.

Fig. 14. Programming model for the PRINT
problem using the Intel 8080 .
Table 2: Hex listing of the PRINT problem when implemented using the wait/go mode and the Intel 8080.

Hex address	Hex listing	Mnemonics	Comments
$\begin{array}{r} 1000 \\ 01 \\ 02 \end{array}$	$\begin{aligned} & 21 \\ & 40 \\ & 20 \end{aligned}$	LX1 HL	Set memory pointer to line 40 on page 20 - location of the first byte to be printed
$\begin{aligned} & 03 \\ & 04 \end{aligned}$	OE n	MV1 $C^{\text {c }}$	Load register C with block length (n)
05	OC	INRC	Increment C-sets flags
L2: 06	OD	DCRC	Decrement C
$\begin{aligned} & 07 \\ & 08 \\ & 09 \end{aligned}$	$\begin{aligned} & \text { CA } \\ & 11 \\ & 10 \end{aligned}$	Jz	Jump to L 1 , if $\mathrm{n}=0-$ that is if the zero flag is set
0A	7 E	MOV A,M	Move into A next byte to be printed
$\begin{aligned} & \mathrm{OB} \\ & { }^{\mathrm{OC}} \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & 06 \end{aligned}$	OUT	PRINT
OD	23	INXH	Point to next byte in the block
$\begin{aligned} & 0 \mathrm{E} \\ & \text { OF } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & 06 \\ & 10 \end{aligned}$	JMP	Goto L2
L1:11	76	HLT	Stop

Demetrius Zissos is Professor of Computer Science and Adjunct Professo
of Electrical Engineering at the Univer sity of Calgary, Canada. Educated in Britain, he has been associated with industry on both sides of the Atlantic
for the past twenty years. He has written five books and numerous articles, including a series (with Brian
Holdsworth) on logic design in WireHoldsworth) on logic design in Wire-
less World. He is currently writing two further books, one on logic design and the other on distributed systems.

x
Table 2: Hex listing of the PRINT problem when implemented using the wait/go
mode and the Intel 8080 .

6800 Solution
Step 4: hardware design. No interface hardware is required. ming model and prosen. Our program ming shown in Figs. 12 and 13 . Memor location 10 on page 20 is used as a counter and the first byte is stored in line 40 of the same page. Note that the programming
model is the same as the one used for test-nd-skip systems.
By direct refere model and to the M6800 instruction set ${ }^{3}$, eproduced in Part 4 (September issue) we obtain the hex listing of our wait $/ g$ software - see Table 1.
8080 Solution
Step 4: hardware design. As in the case of he 6800, no hardware is required.
Step 5: software design. Our programming model in the case of the Intel 8080 Figs. 14 and 15. An m.p.u. register is assumed to be available for use as a counter. The first byte is stored in line 40 of By direct refery.
By direct reference to our programmin
mod Fig. 10 and to the Intel 8080^{\prime} instruction set reproduced in the previou article, we derive the hex listing of ou waitgo software. It is shown in Table 2.

References

1. Zissos, D., "System Design with Microprocessors", Academic Press, 1980.
2. Intel 8080 Microprocessor User's Manual 2. Intel 8080 Microprocessor User's Manual 3. M6800 Micr M6800 Microprocessor User's Manual

69
 1 .

[^0]\longrightarrow
www.americantadiohistory.com

The earth-less vertical

 In one of his series of classic papers on transmitting aerials, Dr George Brown ofRCA (Proc IRE, June 1937) analysed the efficiency of monopole radiators in terms their use with 0.4λ buried radials, showing that typically an efficiency of up
to 88 per cent can be achieved with 113 radials, reducing to only 12.4 per cent with just two radials. It is on this work that amateur use of the popular "ground plane" and "vertical" aerials has largely standard medium-wave broadcast aeria still tends to use 72,120 or even 144 radials buried a couple of feet below the surface of the earth by means of mole ploughs, reof 75 to 90 per cent. More and more, in recent years, amateurs using verticals on 7 MHz and below have been persuaded that an extensive earthing system or "mat" is a vital essential. Since such an earthing garden, the h.f. monopole is generally accepted as not providing the sort of per formance at long-distances of which it hould be theoretically capable.
Recently, Leslie Moxon, G6XN, who ilting at the many myths that are part of the "aerial lore" of many amateurs (and professionals), has been investigating what one could call the "cult of the radial" to see if effective h.f. directional arrays can be level without the use of any physical connection to earth. In doing so he has paralleled a similar investigation by the Australian amateur VK3AM who has been developing compact but efficient h.f. ing small boats.
This work is tending to show that, in fact, good efficiency is possible by using he once-popular counterpoise arrangement, but that this can bed by inductive loading In one form, G6XN is using with a base-insulated quarter-wave radiator, a 14 MHz counterpoise a few inches above ground, consising of a 7 ft length of dural tubing parallel tance of about 11 ft of wire. Such monopole (or dipole?) elements can be readily used as driven elements or as reflectors or directors (a two-element array however should or). The counterpoise rods can also be used effectively to increase capacitive coupling between the array elements. Such elements can be easily moved to prepared positions to change the direction of fire of
the array and taken down when not in use. The performance of an array formed from such elements would appear to be equiva-
lent to those of a similar array using an extensive earth mat, although, as might be expected, a little inferior to an equivalent vertical array, however, has many advantages of cost and convenience since it requires no tower, no rotating mechanisms and is not a permanent structure and so presumably falls outside the scope of local outhority planning, while at the same ume gation and development.

Amateurs and c.b.

More and more it looks as though British More and more ic looks as though Brits with, even if some of them may find it difficuit to love, c.b. or Open Channel on frequencies additional to the proposed 928 MHz . Indeed by the time these notes
appear the die may well have been cast, appear the die may well have been cast,
although the package is likely to be so wrapped as to absolve the Home Office from any suggestion that they have been orced into making a "U-turn". But it is nuch to be hoped that amateurs will not hostility. Some of the common complaints made by some amateurs against c.b. could easily be represented as "sour grapes". For example, that amateurs always have to pay ight regulations, keep accurate logs etc, etc, so why should so many people have been allowed to "get away" with 27 MHz peration? . . . and that sort of thing. But here are other, more seriously abrasive, have to take the blame for interference and buses since the media often fail to distin uish between c.b. operators and "hams" But perhaps the most serious problem of all is that many of the thousands of 27 MHz
c.b. units now being used in the UK will c.b. units now being used in the UK will - within the internationally "exclusive" amateur band 28 to 29.7 MHz . Since most .b. units are channelised it is possible that some of this intrusion is accidental, though rate. Since the c.b. operators make no attempt to abide by "band-planning" or imilar conventions, amateurs in many countries are seeing a virtual take-over of ontrol modellers they are not being offered alternative frequencies! C.b. enthusiasts would be well advised to play it cool and not stray above 28 MHz .

Here and there

Australian amateurs are now permitted to three main exceptions. International traffic
must be only with countries that themselves permit such message handling; there must be no question of payment or intangible, direct or indirect; and no business traffic must be involved.
The problems of electromagnetic compatibility become ever more complex as more and more interference-producing or into use: interference from and to home computers and microprocessor-based appliances; automobile electronics; switchedmode power units (even the common or garden diode rectifier can emit hash); virmally all forms of electronics for entertainreporting yet another growing problem: transmitters causing false triggering of "smoke detector" alarms The r.f. can be mains-borne and gets into the detector passing. This requires care if the capacitors are not to interfere with the operation of the units.
An increasing problem for mobile operators, particularly since the public in
terest in c.b., has been the widespread theft of radio equipment from unattended vehicles. Most weeks, amateurs report the loss of several expensive transceivers (presumably when 27 MHz units are stolen the lilegal operators are reluctant to report the
loss to the police). Recently, the West London 144 MHz repeater equipment of the UK FM Group was stolen and the Group has since taken out insurance on its ther repeaters.

In brief

The G-QRP club, founded in 1975 to encourage interest in low-power operation, now has more than 1000 members in 24 countries, including over 200 in the USA the traditional home of the "Californian
Kilowatt"... The Radio Amateurs Invalid and Blind Club now has a membership of over 600 , including more than 300 licensed amateurs . . PY2AA is the callsign of a new 50.055 MHz beacon transmitter, with 25 watts power, located
at Sao Paulo, Brazil. A South African multi-band beacon, ZS5VHF transmits on $28.2025,50.005$ and 144.925 MHz , the 28 MHz signals have been received well in the U.K. . . The British Amateur Television teur Television Handbook" with over 100 pages devoted to practical and up-to-date designs of amateur television equipment (Non-members $£ 1.50$ plus 35 p postage rom BATC Publications,
nue, Leicester LE5 1FN.). nue, Leicester LES 1FN.).
PAT HAWKER, G3VA

Introduction to low-noise amplifier design

How to optimize collector current and calculate noise figure

Many constructors still settle for more noise in their amplifiers than
necessary because of the complexity of a full mathematical treatment and because manufacturers often fail to specify their transistor parameters in a convenient form. This article shows how to calculate the optimum resistance and the minimum noise figure at that current, and gives practical circuits for instrumentation
use and sound reproduction.

Once the basic design requirement of optimum collector current has been satisfied, determined from the normal design relationships. For example, as the noise figure is independent of the transistor configuration and overall feedback, the usual
feedback pair arrangements are practic able. Therefore the transistor and its operating point can be selected to meet the circuit noise requirements and the configuration or feedback can be determined to meet gain, bandwidth and impedance renoise and other circuit constraints to be optimized independently.
The selection of a suitable input device depends mainly on the source resistance
and bandwidth requirements. At lowest values of source resistance it is necessary to use transformer coupling at the input to match the source resistance to the optimum for the amplifier, Fig. 1 . Unfortunately transformers introduce
extra losses and degrade the basic noise figure of the amplifier. For example, an amplifier designed for a 5 kohm source might have a noise figure of less than 1 dB . When matched with a transformer to a 30 ohms dynamic microphone this
figure could be degraded to 2.7 dB . If integrated circuits are used their parameters are well specified by the manufacturer, but their noise levels are in general about two to five times that of a discrete transistor circuit. This makes
them more suitable as second and succeeding stages. Fortunately bipolar transistors can be used for most audio front-end applications and this article is restricted to their use.
There is a slight difference between p -np and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors. A $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor
can have a lower base spreading resistance due to a higher carrier mobility in its base

sOURCE RESISTANCE (OHMS)
Fig. 1. Choice of input amplifying device depends on source resistance.
region, while an n-p-n transistor often ha a slightly larger current gain and bandwidth. This makes the p-n-p type more useful with low source resistances, with the n-p-n transistor useful at the higher reason, and also for direct coupled circuits, it is desirable to have information on range of $p-n-p$ and $n-p-n$ devices.
A table of suitable low-noise transistor and their parameters is shown in Table 1
These are measured values and may no agree with those obtained from the manufacturers' specification sheets. Details of
some low-noise i.cs are included for com parison.
Some noise mechanisms are process-de pendent and result from faults such a surctive contts, surface contamination, deland irregularities at the base-emitter junc tion. For this reason transistors with th same type number may vary from maker to frequency noise below 1 kHz where poo processing techniques become mor apparent.
Any source unavoidably generates an
amount of thermal noise power which pends on its temperature, Boltzmann's constant, and the system's noise band width. Noise factor, as a ratio, is defined as
$F=\frac{\text { total available output noise power }}{\text { portion of }}$

Noise figuire is simply this noise factor
expressed in decibels. $\mathrm{NF}=$ expressed in decibels. $\mathbf{N F}=$
$10 \log \frac{\text { total avalable output noise power }}{\text { portion of output power caused by source only }}$
or $N F=10 \log F$. The noise figure is a attributed to the amplifier. For a perfect

Table 1. Measured values of low-noise device parameters may not agree with manufacturers data

		$\begin{gathered} \beta \text { at } \mathrm{l}_{\mathrm{c}} \text { of } \\ 1 \mathrm{~mA} 100 \mu \mathrm{~A} 10 \mu \mathrm{~A} \\ \hline \end{gathered}$			rob (Application
2N930	n-p-n	300	200	130	700	High source resistance
2N4124	$n-p-n$	300	200	110	100	Low source resistance
BC109	$n-p-n$	350	300	200	400	General purpose
2N3707	$n-p-n$	350	250	200	200	General purpose
2N4403	$\mathrm{p}-\mathrm{n}$-p	200	140	80	40	Low source resistance
2N4125	$\mathrm{p}-\mathrm{n}$-p	150	120	90	50	Low source resistance
2N3964	$\mathrm{p}-\mathrm{n}$-p	350	310	260	150	Low broadband noise
2N4250	p-n-p	350	310	260	150	Low broadband noise

IC type	$\begin{gathered} V_{\mathrm{n}}{ }^{1 / 2} \\ \left(\mathrm{nV} / H z^{2}\right) \end{gathered}$	$\begin{gathered} 1_{n}{ }^{1 / 2)} \\ \left(p A / H z^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{R}_{3} \\ (k \Omega) \end{gathered}$	$\begin{gathered} f \\ (\mathrm{~Hz}) \end{gathered}$	NF at R_{s} (dB)
TDA1034N	9.0	3.0	3.00	10	6.41
	3.5	0.4	8.75	1 k	0.70
RM4739	20.0	4.0	5.00	10	10.41
	10.0	0.5	20.00	1k	2.11
LM201A	22.0	0.74	29.73	10	4.82
	16.0	0.20	80.00	1 k	1.46
OP10EY	10.3	0.32	32.19	10	1.50
	9.6	0.12	80.00	1k	0.58
AD517	35.0	0.05	700	10	0.86
	20.0	0.03	667	1 k	0.31
ZN460	0.8	1.0	0.800	5 k	0.41

mplifier, one which adds no extra noise to factor is unity, and the noise figure zero. Usually there is not a great deal of value in reducing the noise figure much below 3 dB . A noise figure of 3 dB is equivalent to say-
ing that the amplifier and source are coning that the amplifier and source are con-
tributing an equal amount of noise to the wanted signal. Even if the amplifier noise could be reduced to 0.1 of the source oise, the total system noise is now about 0.7 of the 3 dB condition. However it must be remembered that an amplifier with a
noise figure of 0.5 dB at 1 kHz with a source resistance of $5 \mathrm{k} \Omega$ will have a higher figure at low frequencies and at source esistances away from the optimum. The normal procedure is to design the desired source resistance. The optimum. collector current for the transistor depends on the driving source resistance R_{s} and the direct current gain β.
Optimum collector current

$$
I_{\mathrm{c}}=\frac{(\beta)^{1 / 2}}{40 R_{\mathrm{s}}}
$$

For example, determine the optimum curent for a 2 2N403 transistor with a source taken as 200 .

$$
I_{\mathrm{c}}=\frac{(200)^{1 / 2}}{40 \times 400}=0.88 \mathrm{~mA}
$$

As shown in Table 1a β of 200 at 0.88 mA is possible. If the formula had given a nuch lower optimum collector current,
ay $50 \mu \mathrm{~A}$, then the β would have to be educed to about 100 and the optimum ollector current recalculated. This proceure is repeated if necessary rent.
The procedure is not too critical because of the wide variations in β, between one transistor and the next and because the othe square root of β;
The minimum noise factor F, at the optimum collector current can be calculated from the source resistance R_{s}, the arrent gain β, and the intrinsic base spreading resistance $r_{\mathrm{bb}^{\prime}}$

$$
F=1+\frac{r_{\mathrm{bb}}}{R_{\mathrm{s}}}+\left(\frac{1}{\beta}\right)^{1 / 2}
$$

For the conditions previously discussed for the 2 N 4403 transistor

$$
F=1+\frac{40}{400}+\left(\frac{1}{200}\right)^{1 / 2}=1.17 \text { times }
$$

Then the minimum noise figure is $N F=10 \log F=10 \log 1.17=0.68 \mathrm{~dB}$.

Microphone preamplifier

 exampleMany dynamic microphones have impedances of 200 or 600 ohms. The previous examples suggest that a 2 N 4403 transistor run at a collector current of about 1 mA could be used for this application, an
a suitable circuit is shown in Fig. 2 .

source resistance

A common-emitter amplifier is followed by an emitter follower. The dc conditions are determined by the bias chain from Tr_{2} emitter to Tr_{1} base, but this does not procies because of C_{2}. The low frequency response is determined mainly by the input and output coupling capacitors at 10 Hz , while the high frequency response is determined by C_{3} at 26 kHz . If C_{3} is not in-
cluded the high frequency response would extend to 1 MHz , which is undesirable.
The first transistor is essentially an unloaded common-emitter stage, and its gain room temperature is
$\frac{V_{0}}{V_{\mathrm{i}}} \approx 40 R_{1} I_{\mathrm{c}}=204$ times or 46 dB
Measured results on two amplifiers gave gains within 1 lB of the calculated value.
The input resistance was 2.7 k ohms. As

Table 2. Comparison of several transistors for a $\mathbf{6 k o h m}$ source.

	β	$\underset{(\mu A)}{\mathbf{I}_{\mathbf{c}}}$	$\begin{aligned} & \text { rab } \\ & (\Omega) \end{aligned}$	F	NF
2N930	150	51	700	1.198	0.79
2N4124	150	51	100	1.098	0.41
BC109	250	65.9	400	1.130	0.53
2N3707	220	61.8	200	1.101	0.42
2N4403	100	41.7	40	1.107	0.44
2N4125	100	41.7	50	1.108	0.45
2N3964	280	69.7	150	1.085	0.35
2 N					

Fig. 2. Instrumentation preamplifier is
suitable for microphone
suitable for microphone use.
Fig. 3. Noise figure plotted against source resistance for the microphone preamplifia
(top), and against frequency (bottom).
Tr_{1} has a high gain the noise contribution by Tr_{2} is negligible. Fig. 3 shows the noise figure plotted against the source resisplotted against frequency for a fixed source resistance; in this case the non-optimum value of 50 ohms.
These results. confirm the theory, and show that the 2 N 4403 transistor is particu-
larly suitable for both low source resislarly suitable for both low source resis-
tances and low frequency applications where noise is important.
Measurements on several 2N4403 transistors suggested that about one quarter of them had excess noise at low frequencies,
but mid-frequency results were consistendly low. For critical applications the amplifier input should be terminated with a 390 -ohm wirewound resistor and Tr_{1} selected for a minimum amount of noise. This noise can be measured at the output
of the amplifier chain with an oscilloscope or a.c. voltmeter. An oscilloscope is particularly valuable because any low frequency or burst noise can be observed. If the preamp does not dominate the noise generated from succeeding stages (with the gain
control at a maximum) then these stages need to be examined!
The full design of a general-purpose audio preamplifier can be quite a problem, and a magnetic pickup may be the most rises with frequency, the amplifier has an equalization curve which gives 20 dB boost qelow 50 Hz and 20 dB cut at 20 kHz , and the basic amplifier noise may be increasing at low frequencies.
The theoretically correct approach is to allow for all these factors and design for he lowest total noise over the complete audio bandwidth. This really demands an exact model for the circuit and a good computer program. In practice a reasonfor a source impedance of about 6 k ohm . In Table 2 several transistors are compared for this source impedance. All of
these transistors appear to be suitable,

apart from the 2 N 930 . The 2 N 4403 tranistor has been chosen for the practical ircuit, and the example

$$
\begin{aligned}
& I_{\mathrm{c}}=\frac{(\beta)^{1 / 2}}{40 R_{\mathrm{s}}}=\frac{(100)^{1 / 2}}{40 \times 6 \times 10^{3}}=41.7 \mu \mathrm{~A} \\
& F=1+\frac{40}{6000}+\left(\frac{1^{1 / 2}}{100}\right)=1.107 \\
& N F=10 \log 1.107=0.44 \mathrm{~dB}
\end{aligned}
$$

One practical circuit might be similar to hat shown in Fig. 5, where two commonmitter stages are followed by a common work and the next stage. When Tr_{1} is biased from a potential divider as shown, the only bias component which contributes noise is R_{3}. The actual voltage drop across R_{3} is small and therefore any excess noise rent flowing through it, is also small. The amount of thermal noise it generates is attenuated by the source. The value shown will provide the load resistance required for most magnetic cartridges, and can The approximate open-loop gain for this ype of circuit is

$$
\frac{\beta_{2} R_{8}}{R_{5}+\frac{1}{40 I_{\mathrm{c} 1}}}=\frac{320 \times 47 \times 10^{3}}{470+\frac{1}{40 \times 44.7 \times 10^{-6}}}
$$

$$
=14,600 \text { times }=83 \mathrm{~dB}
$$

A practical measurement of this circu gave an open-loop gain of 80 dB , which is perhaps more realistic.
Unlike the first circuit, where the gain was well defined by the collector curren he second transistor. Overall negative feedback is therefore essential to accu rately define the closed-loop gain. In Fig. he closed-loop gain is 60 dB and the fre quency

Fig. 4. Preamplifier as shown has flat frequency response; for use with magnetic
pick-up replace feedback network with pick-up replace feedaack network with recommends metal film or metal oxide
resistors, as wirewound ones resistors, as wirewound ones are bulky and
expensive. Tantalum electrolytics are expeferred over aluminium because of their
pertrelt lower leakage.

Fig. 5. Noise figure plotted against requency for the general-purpos

The closed-loop gain is defined at

$$
G=1+\frac{R_{10}}{R_{5}} \text { times. }
$$

Resistor 5 is required so that the closedoop gain can be defined by overall negaive feedback. It also provides series local eop gain by about 7 dB . However the pen-loop gain of 80 dB which was meaured is adequate to provide a reasonable mount of feedback at low even though the equalization curve 50 Hz) mands a 20 dB gain boost (be value of R_{5} above the mid-band gain. The value of R, eduction in the feedback impedance, reducing the available output voltage swing at high frequencies where the equalization curve falls at 6 dB per octave.
Although negative feedback does not alter the amplifier's noise figure, R_{5} is contribute an amount of thermal noise, the ffect of which depends on the source reistance. It should be made much smaller than the source resistance. Noise factor

$$
F_{\mathrm{r}}=F+\frac{R_{5}}{R_{\mathrm{s}}} .
$$

In the example
$F_{\mathrm{r}}=1.107+\frac{470}{6000}=1.185$ times
thus $N F_{\mathrm{r}}=10 \log 1.185=0.74 \mathrm{~dB}$.
Although this appears to be a significant degradation the resultant noise figure is be a reasonable value. It does indicate why an approach like Fig. 2 is valuable for critical applications, because the gain can parameters without using emitter degrada-

Further reading

Low-noise Electronic Design, by C. D. Motives many practical examples which are fully pecified in terms of gain, bandwidth, and noise for up to four different values of passive compo-

Magnetic recording review

2 - Performance of modern cassette tapes
by J. Moir, F.I.E.E., James Moir and Associates

Mr Moir continues his survey of magnetic recording technology and
materials with an examination of materials with an examination of possible future developments concludes the article.
Equalization
The limited frequency response of the early ferric coated tapes lediz the extening of the frequency response of the record and replay amplifiers to improve both the frequency response and the s / n ratio. The correction required to achieve a flat overall
record/replay response was divided between the record and replay system in a way that eliminated the need for variable equalization in the user's equipment. Standard replay calibration tapes were produced, having a closely specified response
curve, and the recording engineer, having equalized his replay equipment to ensure that these standard tapes played with a flat frequency response, was required to vary he equalization of his recording system ponse gave the same flat overall response. However, the performance of tape coatings and our knowledge of record and replay head design has so far improved that he equalization originally specified is not only unnecessary but actually degrades the
achieved performance of many of the recent types of tape.
The equalization to be applied to the system was specified indirectly as the relaion between the signal voltage at the input of the recording chain and the resultant
surface induction (now the short-circuit flux) on the tape. It was defined as the combination of two curves, one being the response of an RC circuit with a time con-low-frequency performance, and a second RC circuit with a time constant of 120 microseconds defining the performance at frequencies above about 800 Hz . The com-
bined frequency response can be read from Table 1: Standard time constants

Tape Speeds	Time Constant	
	t_{1}	t_{2}
$76.2 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} / \mathrm{sec})$ and	35	Infinity
$38.1 \mathrm{~cm} / \mathrm{s}(15 \mathrm{in} / \mathrm{sec})$		
$19.5 \mathrm{~cm} / \mathrm{s} 7 / \mathrm{sec} / \mathrm{sec})$	70	Infinity
$9.53 \mathrm{~cm} / \mathrm{s} 33 \mathrm{inh} / \mathrm{sec})$	90	3180
$4.76 \mathrm{~cm} / \mathrm{s}(17 / \mathrm{sin} / \mathrm{sec})$	120	1590

Fig. 9, using the appropriate curves. The low-frequency signal is boosted and the high-frequency signal attenuated in the recording process to minimize distortion capacity of magnetic tape at high frequencies. Table 1 provides data on the agreed correction curves for all the current standard tape speeds.
response, the replay chain must have the inverse response, but to achieve this some additional high-frequency equalization must be included to compensate for the high-frequency losses in the replay head. are recorded with a carefully calibrated, surface short-circuit flux/frequency relation that follows the specified recording curve. When these tapes are used to obtain. flat replay system frequency response the
losses in the replay system are automatlosses in the replay system are automat-
ically corrected and the desired flat response is obtained for the whole record/replay chain.
During the few years following the standardizing of the $120 \mu \mathrm{~s}$ equalization, the

Fig. 9. Recording characteristics (BS1568)
tapes has been greatly improved and designers have taken advantage of this by changing the recommended recording
equalization time from $120 \mu \mathrm{~s}$ to $70 \mu \mathrm{~s}$. This equalization time from $120 \mu \mathrm{~s}$ to $70 \mu \mathrm{~s}$. This
necessitates an equivalent change in the replay system frequency response, usually achieved by providing two or three alternative switch-selected frequency response curves. The 120 us equalization curve is
used for all the ferric tapes and some of the used for all the ferric tapes and some of the
early chromium and cobalt modified tapes, early chromium and cobalt modified tapes,
the $70 \mu \mathrm{~s}$ equalization curve being employed with the later chromium and pure metal tapes.
Current semi-professional machines and
the better domestic units now provide the better domestic units now provide both
bias and equalization adjustment bias and equalization adjustment, gener-
ally using separate controls. Used with ally using separate controls. Used with performance with most tapes. Professional and semi-professional machines usually provide a step-less control of bias.

Current tapes
At this point it appears appropriate to change from outlining simple theory to looking at some examples of current practice in tape production. About 100 samples of current cassette tapes from 25
suppliers were examined, using a Nakami-
 which is capable of handling metal tapes
without saturating the recording head cores.
The bias settings were chosen using the Nakamichi facilities for equalizing the signal outputs at frequencies of 400 Hz and 15 kHz and with the equalization set to $20 \mu \mathrm{~s}$ for the ferric tapes and $70 \mu \mathrm{~s}$ for th errichrome, chromium dioxide and meta tapes. The bias settings are quoted in dB ence tape, but since there are as yet no metal reference tapes, the bias setting employed for these tests are quoted with re
The to the Nakamichi metal tape
pe of tape coating are averaged and these are the values in Table 2. The limits iven in the 'Frequency Response colum hould only be taken as being generally dicative of the resuls, the complet comparison.
The advantage possessed by the metal particle tape of high saturation values igh frequencies is not immediately ob vious from the data in the Table, being quency replay pre-emphasis from $120 \mu \mathrm{~s}$ to $70 \mu \mathrm{~s}$. The higher levels of high-frequency ignals that the metal tapes accept allows reduction in the high--requency attenuaand this in turn necessitates a reduction in he replay-amplifier high-frequency boost, with a corresponding improvement in the overall signal/noise ratio.
Typical response curves are provided for ias levels are needed to enable optimum performance from every type of tape However, the person who buys budget and special offer' tapes is unlikely to be in rested in paying for a wide range or bis of bias are probably adequate for the majority. Few of the cheap machines pro vide bias adjustments so the best performance is likely to be secured from the simp ferric tape
The penalty for buying 'special offer' nd 'advertisement-by-postal circular' types of tape is illustrated by the frequenc

	Bias level	333 Hz MOL	Sensit.	10kHz sat.	Noise (CCIR/ARM)	Print through	Freq. Resp. $10 \mathrm{kHz}-10 \mathrm{~dB}$ (n.b. see also Fig. 10
Budget quality	+0.39	+1.98	-1.38	-5.86	-50.65	-55.1	$-1.65 \mathrm{~dB}$
Good quality	+1.26	+5.14	+0.03	-4.14	-50.76	-53	$-1.34 \mathrm{~dB}$
Ferric tape ${ }_{\text {FeCr tapes }}$ @	+3.13	+7.3	-0.7	-6.38	-54.75	-49.5	-3.53dB
$\mathrm{CrO}_{2}{ }^{*}$	+6.33	+5.09	$+0.67$	-6.12	-54.32	-47.85	-0.83dB
Metal tapes*	+11.3	+6.82	+0.6	-3.56.	-54.48	-56.56	-0.2dB

- $\mathrm{FeCr}, \mathrm{CrO}_{2}$ and metal tapes all tested with $70 \mu \mathrm{~s}$ equal ization. Ferric tapes tested with $120 \mu \mathrm{~s}$ equalization.

Notes
CrO_{2} sensitivity quoted with respect to $\mathrm{DIN} \mathrm{CrO}_{2}$ sensitivity on optimum bias setting
$(+6 \mathrm{~dB})$ $\stackrel{+}{+6 \mathrm{~dB}}$
. MeCr sensitivity quoted with respect to DIN Fe sensitivity.
4. @ Equalization problem on Nakamichi with FeCC tapes
5. All figures quoted with respect to Dolby level unless otherwise stated From an initial inspection of the Table it would appear that the high-frequency
saturation level of metal tapes is little better than that of good-quality ferric tape Saturation, the tests carried out on the metal tapes were wooth 70 Ous equalization whilst
Howeve
those in the ferric tapes were done using 120 us equalization. In absolute ters. hose in the ferric tapes were done using $120 \mu \mathrm{~s}$ equalization. In absolute terms, the performance of the metal tape in this respect is at least $4 d B$ better than the ferrict
but, because the manufacturers have chosen to use a different equalization arrangement, the benefits of improved high-frequency saturation are not realized by
the user. As far as the average user is concerned, the main advantage of using a meta tape would be an improvement of 4 dB in background noise level.
quency response of a tape widely adver ised under the name of, but having no onnexion with, a very well known com pany. Not all such budget tapes are equally ferric tapes may well be perfectly factory in a machine bought for youngster. At an intermediate price level, many own-name tapes from Boots and other well known multiple stores are excel ent value for money.
The ferrichrome, two-layer tapes proa. 'step' of about 4 dB at frequencies in the region of 2 kHz , presumably due to the magnetic discontinuity at the boundary ayers. This step would appear to require a special equalization curve to achieve the optimum performance.
With the bias optimized as described for
each type of tape, the metal tapes are seen to have the highest m.o.l. at 330 Hz , the highest saturation level at 10 kHz , the price, but note the qualification about optimizing the bias. A less well appreciated imitation to the use of metal tapes and even some of the CrO_{2} tapes is the inability of many machines to fully moduase and circuit limitations being the apparent cause.
The performance of metal tapes used in machines incapable of providing the optimum bias is generally much worse than that of an intrinsically inferior ferric or erric-chrome tape.
ployed for the tape base material employed for the tape base is probably inbased, but in recent years tensilized poly-

Fig. 10. Typical frequency response curves

Fig. 11. Cheap tape performance

ester has captured the market because of its superior mechanical properties and its
relative freedom from the effects of humidity. Polyester has only a slightly greater ensile strength than pvc tapes, but is some eight times less susceptible to the
effects of moisture, a great advantage in ensuring good spooling with a freedom from 'cupping' and variation in the ghtness of wind. The pvc base is rather moother than the polyester base but no significantly so. A smooth base is advantadue to the variation in coating thickness hat results from changes in the thickness of the backing tape.
The nominal thickness of the tapes varies somewhat between suppliers but es aboully $18 \mu \mathrm{~m}, 12 \mu \mathrm{~m}$ and $6 \mu \mathrm{~m}$ mick engths of tape, the C60, C90 and C120 ypes, the coating thickness being around 4 and $3 \mu \mathrm{~m}$ respectively. The C90 siz ape is probably the best congth, the wen playing time and care in handlin nd gentler treatment in machines than is usual.
The use of a thick tape base has the obvious disadvantage of reducing th amount of tape that can be stored in a cassette or on an open spool, but it has
 diacent layers. These result in pre and post echoes that are obvious when they ccur in the middle of quiet passages. The ansfer is accelerated by storage of the ape in a warm environment and by long coatings are more susceptible to the rrouble than others, probably because of their increased temperature dependence.

The future

It is interesting to consider possible further improvements. The casserte format is here stay, for its convenience clearly .outweighs the residual deficiencies in performance. Its mechanical performance is not perfect, but is probably commerciall occurs, so the mechanics will be improved in this respect.
Tape saturation at high frequencies pro duces amplitude compression and har-monic-type distortions that do not occur in reel-to-reel recorders running at higher
speeds. There is, therefore, some opportunity for improvement, but in most other respects the performance of the existing coatings is more than adequate for the commercial market. This suggests that achieving the present performance or at
least a commercially acceptable performance at half the present tape speed is likely to be the next step.
Development in tape coatings that have contributed so greatly to improvements in appear to be applicable to $1 / 4$ in tape, or at least do not have the same advantages. Most of the limitations in coating performance are wavelength-dependent and not frequency-dependent effects. An adequate
quirements can be secured from 1/4 in tap anning at the present standard speed nd, in consequence, there appears to b field application for the new coatings in th
This situation does not hold for tapes used for tv and data recording, so the half inch and wider tapes used for these appli cations are likely to benefit from coating peeds.

Further reading

xon, The Reproduction Of Signal Recorded on Magnetic Tape, Part 3, May 1953.
Axon, Overall Frequency Characteristic in Axon, Overall Frequency Characteristic in
Magnetic Recording, B.B.C. Quarterly, No. 5, pestmize, W. K. $\mathbf{\text { . }}$., Studies on Magnetic

Dividing by fractions
 \section*{}

triangular in form, has a frequency of har the last component, that is 378 Hz , and peak-to-peak amplitude of 0.0055 of a
input period or, for a s.c. input,

$$
226 \mathrm{~ns} \times 0.0055=1.24 \mathrm{~ns}
$$

The final component is sketched in Fig 6 (c). The sequence A-B results in a phase $+0.006 \mathrm{~T} . \mathrm{B}-\mathrm{C}$ has thus over-corrected fo A-B by an amount o $0.006-0.005=0.001 \mathrm{~T}$. The sequence $\mathrm{A}-\mathrm{C}$ is repeated by C-E, \ldots. etc and each tim This is reperted five tins accumulate This is repeated five times to point K $0.005 T$. Since the sequence K-L is iden tical to that of $\mathrm{A}-\mathrm{B}$, a correction of $-0.005 T$ occurs, exactly eliminating th error. The steady accumulation of this er ror and its final elimination gives the jiitter
companent seen in Fig 6(c). It is nearly sawtooth in form, has a frequency of 68.75 Hz and a peak to peak amplitude of
$226 \times 0.005=1.13 \mathrm{~ns}$
It has already been mentioned that re moval of these jitter components is don with a phase-locked loop. The count of the divider has been so arranged that the lowin amplitude as these are the most diff cult to remove. If we set a specification of 1ns on the jitter, then both the final two components require iittle attenuation. The 756.25 Hz component is the most difficult tude high. At this frequency, we requir 41 dB attenuation, and this can be readily achieved in the phase-locked loop shown in Fig. 7.
The 111 ns of jitter in a period of $65 \mu \mathrm{~s}$ would give a p-p voltage perturbation of mV at the output of the phase comparator. For the moment ignoring any attenua tion in the low pass filter, after the d.c. amplifier, 70 mV jitter will appear at the
input of the v.c.o. It can be shown that for a sawtooth variation at the input of a v.c.o.
ecording, Philips Research Laboratories eeprint R213-R214-R217-R222. (Originally in hilips Research Reports, Vol. 8, pp. 148-157 Daniel, E., A Preliminary Analysis of Surface Indiuced Tape Noise, IEEE Trans. on Comm,
and Electr,
83 nd Electr., V. 83, No. 72, May 1964. Daniel, Eric D., and P. E. Axon, Acciden
Printing in Magnetic Recording, B.B.C. uartery, Vol. 5, pp. 241-253, 1950 . Vallace, R. L., Reproduction of Magnetically Recorded Signals, Bell System Techn
fournal, Vol. 30, Pt. 2, Oct 1951. Review of Progress in Recording Materials,
IEEE Trans. on Magnetics, September 1978 . IEEE Trans. on Magnetics, September 1978 .
Bate, G., Survey of Recent Advances in
Magnetic Recording Materials, IEE Trans. on Magnetics, July 1978 .
British Standard 1568 Magnetic Tap
Recording Equipment.

control unit would consist of a olume control and a programme lector switch.
In practice, correctly designed one controls can make a significant contribution.

For a constant sound level, eplay from a gramophone record produces distortion which increases ery rapidly at high frequencies loubling in fact for every major third increase in pitch.

There comes a point when the ontribution of this distortion is increasing at a greater

tent and this is what decides the optimum setting of the an essential and integral part of every Quad pre-amplifier.

The rate of attenuation can be set anywhere between 0 and 25 dB per octave starting at one of three frequencies $5 \mathrm{k}, 7 \mathrm{k}$, or 10 kHz and an each record to provide more of the music and less of the distortion

To learn all about the Quad 4 write or telephone for a leaflet

The Acoustical
Manufacturing Co. Ltd.
Huntingdon PE18 7DB.
Telephone: (0480) 52561
QUAD骎
or the closest approac
to the original sound
QUAD is a registered trade mark.
ww - OOS FOR FURTHER DETAII

ww - 035 FOR FURTHER DETALLS

SAW devices from Mulard.

Backed by many years of research and development at Philips Research Laboratories, surface acoustic wave devices are now available as production components.

* RF front end and IF filters
* Oscillators * Delay lines * TV IF filters

Choose from a range of standard devices or let us make a customised design to your requirements.

For further details contact:
Brian Buckingham ext 2679 or Jack Mcllravey ext 2767.

Surface acoustic wave devices

2 - More on bandpass filters, delay lines and oscillators by R. J. Murray and P. D. White Philips Research Laboratories

This second part gives fuller information on the specification, operation and performance trade-ofts of band-
pass filters, delay lines and oscillators.

Bandpass filters
There are two types of s.a.w. bandpass filters. The first is the transversal filter, which consists of two or more interdigital
transducers (see "principles") and is a transducers (see "principles") and is a
travelling wave structure. These filters are wideband, with bandwidths of 0.2% to 100% of centre frequency. Centre frequencies in the range $10 \mathrm{MHz}-500 \mathrm{MHz}$ are readily achievable with a projected upper limit in excess of 1.5 GHz . Design procefilters. The second type of bandpass filter is the resonator kind, which consists of one or more i.d.t.s in a cavity formed by two
surface wave reflectors. This structure surface wave reflectors. This structure
supports a standing wave. Bandwidths of supports a standing wave. Bandwidths of
0.01% to 1% of centre frequency are feasible, with centre frequencies currently in the range $50-500 \mathrm{MHz}$ and ultimately greater than 1.5 GHz . Design procedures are similar to those of cont filters.

Transversal filters. Fig. 7 (a) shows a s.a.w. transversal bandpass filter, which consists of two i.d.ts on a piezoelectric substrate. An electrical signal is fed into
one transducer, converted to a surface one transducer, converted to a surface
acoustic wave, reconverted to electrical energy at the other i.d.t. and emerges as a filtered signal. An alternative structure is shown in Fig. 7 (b) which incorporates in the s.a.w. propagation path a multistrip
coupler consisting of a series of parallel unconnected metal strips. This acts to transfer the surface wave from one track to another, providing discrimination against unwanted bulk waves which are also launched by i.d.ts.
If two i.d.ts have individual frequency
responses $H_{1}(f)$ and $H_{2}(f)$, where f is the frequency, then the overall filter transfer function $H(f)$ is given by:
$H(f)=H_{1}(f) \cdot H_{\mathbf{2}}(f) \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{t}}$
(1)
where $\tau=L / v_{0}, L$ is the geometric centre-to-centre separation of the i.d.ts, v is the
s.a.w. velocity and ${ }^{\star}$ denotes complex conjugate.

The filter amplitude response $A(f)$ is given cal about its geometric centre. S.a.w.

$A(f)=\left|H_{1}(f)\right| \cdot\left|H_{2}(f)\right|$
and the phase $\theta(f)$ by
$\theta(f)=-2 \pi f \tau+\tan ^{-1}$
$\left\{\frac{\operatorname{Im}\left\{H_{1}(f) \cdot H_{2}^{*}(f)\right\}}{\operatorname{Re}\left\{H_{1}(f) \cdot H_{2}^{*}(f)\right\}}\right\}(3)$
If $\left(H_{1}(f) \cdot H_{2^{*}} \cdot(f)\right.$ is wholly real or wholly imaginary, the phase variation $\theta(f)$ in equation (3) becomes a linear function of requency. This generally desirable of the i.d.ts symmetrical or antisymmetri-
cause ripples in the amplitude phase and

Fig. 7. (a) S.a.w. transversal filter geometry; (b) s.a.w. transversal filter
incorporating multistrip coupler to suppress unwanted bulk waves.

Fig. 8. Triple transit mechanism in s.a.w. devices. The triple transit signal results from successive
before detection
group delay responses of the filter. These spurious signals can cause quite large deviations from the ideal response and appropriate steps are usually take
them.
The most serious unwanted response is usually the triple transit signal which is illustrated in Fig. 8. This is caused by successive reflections from the output
and input transducers before detection. If the main signal delay is τ, then the triple transit signal is delayed by 3τ i.e. 2τ more than the main signal. The period of ripples in the frequency response is thus $1 / 2 \tau$. The major contribution to the reflecelectrical and is a consequence of the three port structure of the i.d.t. The i.d.t. has wo acoustic ports and one electrical port as shown in Fig. 9. When used for

Fig. 9. Three-port nature of the interdigital
transducer

Acous
(b)
Fig. 10. (a) Spurious s.a.w. reflections from substrate end Fig. 10. (a) Spurious s.a.w. reflections from substrate end
(b) suppression of reflections from substrate end. These
reflections cause distortion of the filter amplitude and reflections cause
phase responses.
signal causes acoustic signals to be launched at both of the acoustic ports. If the electrical port is perfectly matched livered to each acoustic port. Conversely, if surface waves are incident on one acoustic port with the electrical port perfectly matched then half of the energy is delivered at the electrical port and one quar-
ter is delivered at each acoustic port. This, ter is delivered at each acoustic port. This,
for a filter consisting of two perfectly matched (electrically) conventional i.d.ts, the minimum theoretical insertion loss is 6 dB (never quite achievable in practice)
and the triple transit signal is only 12 dB and the triple transit signal is only 12 dB
below this level, which would result in an amplitude ripple of approximately 4 dB peak-to-peak and a phase deviation from linear of approximately 25° peak-to-peak. For most applications ripples of this magnitude are totally unacceptable. The
simplest technique for reducing the triple transit signal, and the most widely used in practice, is to operate the filter with a mismatched source and/or load impedance. This increases the insertion loss but drastically reduces the level of the re-
flected signals. Using this technique a typical insertion loss is 20 dB with peak-topeak ripples of less than 0.3 dB in amplitude and less than 2° from linear in phase. Therefore, when a filter has been designed to operate with mismatched terminations it
is important to remember that any attempt to improve the match and thereby reduce the filter insertion loss will cause increased amplitude and phase ripple. Other, more compli-
cated, methods of suppressing triple cated, methods of suppressing triple
transit responses are available for use in transit responses are available for use in
filters with particularly difficult specifications.

There are several other spurious signals in s.a.w. devices which can be substan tially reduced by suitable design of the
i.d.ts and substrate. Reflections from substrate ends are reduced by bevelling and applying acoustic absorber behind the i.d.ts as shown in Fig. 10. Reflections within i.d.ts are reduced by replacing each
single electrode single electrode (a quarter of a wavelength
wide) by a pair of like polarity 'double' electrodes (each an eighth of a wavelength wide) as in Fig. 11. Spurious bulk wave responses can be attenuated by the use of a track changing multistrip coupler on high
coupling materials and/or by treatment of coupling materials and/or by trea
the lower surface of the substrate.

Resonator filters. A surface wave resonator consists of one or more i.d.ts suitably positioned in a cavity between two efficient
reflectors of surface waves as shown in Fig. 12. Unlike the more familiar bulk acoustic waves employed in bulk wave resonators, surface waves cannot be efficiently reflected by an abrupt discontinuity (e.g. a
substrate edge) because this would cause a substrate edge) because this would cause a
significant proportion of the energy to be mode converted into bulk waves. S.a.w. reflectors consist of a large number of small impedance discontinuities in the form of metal strips or grooves spaced by hafflectors with peak amplitude reflection coefficients of typically 99% or higher. The resonant cavity will generally be capable of supporting several standing waves, and the required mode is selected by
careful design of the reflectors and the
careful design of the reflectors and the
i.d.t.
The electrical equivalent circuit of a

$$
\xrightarrow{\stackrel{\lambda_{0}}{4}} 1
$$

$\stackrel{\lambda_{0}}{\theta_{-1}^{8}} \stackrel{\frac{\lambda_{0}}{8}}{-1}$

(b)

Fig. 11. (a) Conventional 'single electrode' interdigital transducer: (b) equivalent 'double finger' interdigital transducer used to suppress
mechanical reflections. mechanical reflections.

3(a). This is s. resonator is shown in Fig 'quartz crystal' bulk wave resonator, con sisting of an LCR resonant section (the cavity) and a shunt capacitance due to the
.d.t. Two or more of these elements may be connected together to produce a coupled resonator. The equivalent circuit of a two port resonator is shown in Fig. 3(b). The capacitor C_{c} is defined by th
coupling transducer and is given by:
$C_{c}=2 C_{o} \frac{N_{T}}{N_{c}}$
where N_{T} is the length of the input/output i.d.ts and N_{C} is the length of the coupling d.ts.

Normal coupled resonator behaviour is
observed Fig. 14. By appropriate choice of structure, including in some cases inductive tuning, various standard filter types may be realised (Butterworth, Chebyshev, etc). In general, any number of resonators
may be coupled together to form a multipole filter. A third-order filter is shown in Fig. 15.
S.a.w. resonator filters are low loss nar-
rowband filters and are temperature stable owband filters and are temperature stable quency range of application ($50-1500 \mathrm{MHz}$) there are very few suitable alternative filtering techniques and so the s.a.w. resonator allows narrowband filtering to be implemented at frequencies at which it has many implications in the design of modern systems where the filters may be included at the front end of communication systems and in the high frequency section.
Design procedures for s.a.w. resonator and the filters are minimum phase. Unlike ransversal filters, the phase response achieved for a given amplitude response is uniquely defined.

Further details
 of delay lines

S.a.w. delay lines consist of two i.d.ts suitably placed on a piezo-electric sub-
strate. If each in symmetric or antisymmetric (about its geometric centre) then the delay line frequency response is band-pass with a linear
phase characteristic. Identical uniform transducers are usually used and the amplitude response is, therefore, $(\sin x / x)^{2}$ (see section on "Principles"). Alternatively, with a suitable asymmetric design of the i.d.ts the delay line can be made to
be dispersive (i.e. the delay varying as a controlled function of frequency).
Linear phase delay lines can be made with bandwidths of up to 100% of centre frequency over the frequency range of
$10 \mathrm{MHz}-1.5 \mathrm{GHz}$. Delays ranging from 400 nanoseconds to 30 microseconds or more can be achieved. Relative delays of less than 400 ns can be achieved directly if electromagnetic breakthrough is not a problem, or as the differential delay befeature of s.a.w. delay lines is that rela-

Fig. 12. One-port s.a.w. resonator geometry showing the transducer located between two reflectors.

(a)

Fig. 13(a) Equivalent circuit of one-port s.a.w. resonator; (b) equivalent circuit of wo-port s.a.w. resonator.

Fig. 14. The effect of varying coupling decreasing the value of the capacitance C increases the coupling and results in a broader bandwidth
conventional filters.

(b)

ively large delays can be achieved in a conpensated) quartz substrate, a delay of 1 $\mu \mathrm{s}$ can be obtained with an acoustic path length of 3.2 mm .
Applications include radar systems, electronic countermeasure systems and
larget simulators. S.a.w. delay lines can also be used in discriminator circuits such as that shown in Fig. 16 where a signal is fed to a double balanced mixer via two paths, one direct and the other through a
s.a.w. delay line. Provided the delay line has a linear phase response the d.c. voltage output from the mixer is a cosine function of the input frequency and is approximately linear over a reasonable bandwidth. Linearity can be achieved over a wider mixer inputs to square waves.

Further details of s.a.w. oscillators

There are two distinct types of low noise, stable s.a.w. oscillators. The delay line oscillator employs a conventional s.a.w. delay line in the feedback loop of an ampliulated by typically 0.1%. The ones.a.w. resonator can be used in essentially the same oscillator circuits as conventional bulk wave resonators, or two port resonaloop. Resonator in an ampifier feedback vide very narrowband linear frequency

Fig. 15. A third order s.a.w. resonator filter (package size 28mm x x 20mm). The central ransducers and end absorber are clearly visible.
modulation but can provide better noise modulation can provide better noise work at fundamental frequencies in the range $10 \mathrm{MHz}-1.5 \mathrm{GHz}$ without additional multiplying circuitry. The devices are considerably smaller, cheap

Delay line oscillators. Fig. 17 is a scheoscillator. The delay line consists delay line i.d.ts separated by a distance L, with a delay of L / v corresponding to a phase shif

$$
\phi_{D L}=2 \pi \frac{L f}{v} \text { radians }
$$

Oscillation will occur when the total phase shift around the loop is equal to an integer (n) multiple of 2π, i.e.

$$
\phi_{E}+\phi_{S}+2 \pi \frac{L f}{v}=n 2 \pi
$$

where ϕ_{E} is the electrical phase shif around the loop (excluding delay line and
phase shifter but including the amplifier) and ϕ_{S} is the phase change due to the phase shifter. The loop would thus support a comb of frequencies separated by Δf, where:

$$
\Delta f=\frac{v}{L}
$$

The required mode (at f_{o}) is selected b suitable design of the i.d.ts so that fre
quency f_{o} is passed but frequencies quency f_{o} is passed but frequencies located at nulls of the response of the delay line. One simple way to achieve this is for one i.d.t. to be a uniform transducer with
N periods where $N=(L / v) f_{;}$this makes N periods where $N=(L / v) f_{o}$; this make
the centre frequency f_{f} with traps of the sin x / x response at frequencies $f_{o} \pm n v / L$. This technique is illustrated in Fig. 18. Transducers with a proportion of electrodes removed (thinned i.d.ts) are of ten used to increase frequency reproduc
bility and to reduce internal reflections. The frequency of the oscillator loop may be modulated by variation of the phase in the phase shift circuit which usually incor porates one or more varicap diodes. The output signal can be taken at any poin
around the loop (but not usually immedi-
 Fig. 16. Delay line discriminator using the
good linear phase characteristics of the delay line

Fig. 17. Delay line oscillator. The circuit will phase shift around the loop is an integral multiple of 2π

Fig. 18. Loop frequencies and transducer esponse of s.a. w. delay line oscillator, which (f_{0}) is selected by the transducer response.
tely after the modulator). For maximum power this would normally be immediately after the amplifier; for minimum noise, The gain of the amplifier used must greater than the loss around the loop and it is common to operate the loop with the mplifier saturated. The delay line loss will pically be $10-20 \mathrm{~dB}$, depending on the electrical matching.

Resonator oscillators. S.a.w. resonators (see earlier) are high Q components operating at frequencies of 50 MHz and above. Unloaded Qs in excess of $20,000 \mathrm{can}$ b sible to use these devices as oscillato control elements to provide stable sources tundamental frequencies in the range 0 MHz to 1.5 GHz .

A s.a.w. resonator may be used in an scillator as either a one-port or two-por
evice. If a two-port configuration is use hen the circuit becomes similar to tha sed for delay line oscillators, i.e. an am plifier and a s.a.w. device in a feedback delay line in this case is that the amplifie need only provide 4 to 5 dB of gain since he resonator has a lower insertion los than the delay line. However, because th frequency response of a resonator is no range (approximately 0.02%), there is les potential for linear frequency modulation. If the resonator is used as a one-por device then the circuit would be similar to that used for bulk wave crystal oscillators higher frequency (at u.h.f.) the construc ion could be based on a cavity or resonato stabilized microwave oscillator. A single transistor can be used in some cases, givin a very compact oscillator

Multipath distortion

- does polarization matter?
by Pat Hawker, Independent Broadcasting Authority

Many broadcasting authorities have introduced, or are planning to polarisation in the transmitted signal to help reception on vertical aerials in cars or on domestic receivers.
However, there is some correlation in distortion caused by receiving the signal from more than one source. signal from more than one source.
Research in Japan and Germany has helped to analyse the problem

A recent survey article - "How serious is multipath distortion?" (Ref 1) - drew attention to the lack of recognition in the UK that multipath propagation is probably the most serious cause of the degradabroadcasts are reproduced in the home through good quality equipment, even when reasonably careful regard has been paid to aerial installation.
The article stressed that over 25 years after the start of regular v.h.f/f.m mono
broadcasting in the UK (May 2 1955) and about 15 years after the gradual introduc tion of pilot-tone stereo, there was still widespread lack of knowledge about the extent, and methods of mitigating
multipath effects, induced to some degree by the reluctance of broadcasters, long concerned with the problem of encouraging more listeners to use v.h.f/f.m rather than m.f/a.m, to draw attention, except in the most simplistic terms, to this problem. developments have taken place that deserve serious consideration by those interested in high-quality reproduction of broadcasting.
(1) While the original article drew attention to the work carried out by NHK in
Japan, the information then available was limited to a short English-text summary. Full details of this valuable investigation have since been published by Mitsuo casting (Ref 2). This paper makes it clear that multipath distortion is "far greater" on stereo than on mono transmissions and also reduces stereo separation (although the early investigations in the US and UK between 1940-1960 were of course
confined to mono). Additionally it shows that multipath can be the cause of serious crosstalk into the broadcast programme of information carried on additional sub-carriers, including the SCA (subsidiary in the USA and, by implication, the
ultrasonic tone signalling systems used in the UK, and the experimental 'programme labelling' systems, etc.
(2) Investigations carried out in the Cologne area of West Germany, including 212 site tests carried out from five specially equipped vehicles, and reported in EBU
Review-Technical Part (Ref 3) indicate that the addition of a vertical component to horizontally polarized transmissions, that is any form of mixed polarization, significantly increases rather than decreases the listeners with good, outdoor horizontally polarized aerials. This report emphasises that from both the economic and purely technical points of view, the adoption of circular polarization in West Germany
would be undesirable. This report has been published shortly after the BBC announced its intention (Ref 4) of adding a vertical component to the main BBC national v.h.f/f.m networks of Radio 1-4 (he grounds of providing a better service the grounds of providing a better service
for listeners using car radios, although the German investigators question even this assumption.
(3) The vulnerability of digital systems (including teletext) to short as well as long term echoes was noted in the earlier arti-
cle. Since then it has become clear that British Telecom are experiencing more problems than they anticipated in the planning of high-speed digital networks ($140 \mathrm{Mbit} / \mathrm{setc}$) even on strictly line-ofsearch Review 1979 (Ref 5) notes that: "Analogue f.m (link) systems are relatively tolerant of the signal distortions produced by multipath propagation which will cause an increase in intermodulation noise . . . in
digital systems, the signal components arriving by alternative paths cause intersymbol interference . . . errors in the phase of the recovered carrier and timing signal which result in a more severe degradation
in system performance". To overcome in system performance". To overcome
multipath propagation and deterioration in cross-polar discrimination, both phenomena which in this context vary rapidly with time, British Telecom are considering such remedies as aerial height diversity, adaptive spectrum shape equalization
adaptive decision feedback, etc -al systems of some complexity, particularly when, as appears likely, it was initially expected that the 'ruggedness' of digital transmission
added costs.
It is now clear that even well-planned

Fig. 1. The procedure used by Mitsuo Ohara (NHK) for computing multipath distortion of monophonic or stereophonic
broadcasting.

WIRELESS WORLD APRIL 1981
propagated as well as horizontally polardicates that in normal terrain, there are many more (typically three times as many) ong-term 'echoes' with vertically polar zed signals than with purely horizontall plarized signals. Unlike most previou sudies, the German work was no confined to the sole criterion of received
field-strength, but also the quality of reception. The results are a surprisingly polarization applied to broadcasting,
The tests appear to have been conducted with typical German thoroughness. If one assumes that the methodology contains no als would seem sufficiently convincing as o suggest that the BBC should reconsider its decision to adopt mixed polarization fo its main networks. It is not my purpose, as member of the 'other' broadcasting orga f the German work cannot be 'shot down hen there would appear to be every reaso why both IBA and the BBC should at leas reconsider future policy on local radio, hough (as noted later) on lowg case for p can be made on behalf of the v.h.f./f.m car radio listeners. For the quality conscious domestic listener, the key inding in the German experiment is tha It has been seen -at the veflections which re so intense as to affect even receptio with a horizontally-polarized aerial. I hould be noted that this effect is apparen even with a very directional transmitting aerial. If the transmission is omnibe even more severe".
The German study also points out that hen a vertical component is introduced, here will be problems of compatibility number of new listeners may be gained "at he expense of others who will lose thei service". Existing gaps will not be filled to Why great extent. indy incrman study indicates that lightly inclined plane of polarizatio polarized receiving aerials, it does not even wholeheartedly support such a compromise. But did the German trials 'prove'
only what those concerned wished to nly what those concerned wished ${ }^{\text {prove? }}$
he performance of the early ILR circu arly polarized transmissions (Ref 7) noted hat "the effects of multipath propagation on stereo broadcasts are well-known bu ar more often than is generally realised. During the off-air loop tests we have found on occasions that the system performanc measured at the studio was severely fhe ced by hese phencials, In the sam building, often very close together, hav had very different multipath perform ance". It was also noted that although multipath distortion is caused by the funthe reflected signals, the actual amount of
stortion above this figure is likely to vary ending mainly on the amount of limiting pplied to the sub-carrier
Several years ago EBU W orki Several years ago EBU Working Party individual broadcasters on choice of optium polarization for v.h.f.f/f.m sound roadcasting. Their report (Ref 8) summa ised by F. Wise (formerly IBA) differen marily for high-quality receivin installations, probably with stereo, with no mprovement to reception conditions fo portable or car sets envisaged"; and (b) primarily to reach the largest audience, Account to be taken of those installation quipped to receive any existing transmis sions". For (a) the report came out firml in favour of retaining horizontal polariza on for existing and new services in all horizontal polarization. For (b) the correponding choice was 'mixed' polarization or 'flat or rolling terrain', but 'horizontal' or 'rugged' terrain. The report noted that al path where the reflecting object may be man-made structure, trees, hills or mountains will generally be of significantly reater magnitude for vertically-polarize ansmissions, and that such transmission re more likely to be affected by flections from behind the receiving poin was then considered less convincing and he EBU Panel considered polarizatio nimportant, though noting that in Ge many some evidence existed that building ignals more than those which are horizon ally polarized". The decision to conver BBC network transmissions to mixed ari the 1976 EBU report.

Literature received

A leaflet on the Japanese Izumi range of motoravailable from Appliance Components Ltd Cordwallis Street, Maidenhead, $\begin{aligned} & \text { Berks. SL6 } \\ & \text { WWW }\end{aligned}{ }^{\text {S }}$.
Analog Devices has produced a brochure to xplain specifications and applications of a-to-d
nd d-to-a convertors, sample-and-hold amplifiers and v -to-f converters. It can be obtained from AD at Central Avenue, East Molesey, Sur-
WWW 408

The FCC 180 series of D-subminiature connec-
 copy of their leaflet can be had from Alpha
Wire, Ltd, Alpha House, Central Way, North Feltham Trading Estate, Feltham, Middx. WW409

Engineering Recommendation G22/1, pub-
ished by the Electricity Council, is concerned with the use of devices which use the mains wiring to conduct signals. A copy can be ob-
tained from the Distribution Engineering Branch, the Electricity Council, 30 Millbank,

To conclude, it is necessary to stress th hese comments are not intended riticism of the BBC for playing down the ultipath issue or even for their decisio work transmissions. Rather it is a plea hat, as listeners or as broadcasters, we hould be more aware of the effect nultipath radio propagation and polariza ity analogue or high-speed digital signal Only if we recognise the problem are we ikely to overcome the worst effects, or a least minimise them. We are still all in the earning stage, but it is important for quathe results of the German tests can be accepted as correct.

References

Pat Hawker, "How serious is multipath 8. Mitsuo Ohara, "Distortion and crosstalk cused by multipath propagation in frequency modulation sound broadcasting", IEE ransactions 1980 Braaca81, T. Bossert and A. Lau, W. Blobel and D. ooff, "Comparison between horizontal and ci cular polarization for v.h.f./f.m reception in the
ome and in motor vehicles" $E B U$ Review home and in motor vehicles" EBU Review -
Technical Part, No 182, August 1980 , pp 175 87. 4. P. E. Lonsdale, Letter to Electronics \&
Power, October 1900, p p95.
5. Tames (Ed) "Microwave Radio Digital 5. P. James (Ed), "Microwave Radio Digital
Link", The Post Office Research Review 1979, p 42 - 60 . R. Camp, Letter to Wireless World, with comD. S. Chambers and J. R. Edwards, "Th pecification and performance of ILR v.h. ansmitting systems". IBA internal repor
$\mathrm{D} \& \mathrm{C}$. $\mathrm{R} 3 / 75$, pp8-10. 8. F. Wise, "Chice of polarization for new
Band II services" EBU Review - Technical
Pant, No 155, February 1976, pp 21-24.

Prolog is a portable, multi-channel data acquis
Prolog is a portable, multi-channel data acquis-
tion and replay system, with dual microproces
or control over all operational functions. It is sor control over all operational functions. It is
described by Microdata, the manufactures, in a described by Microdata, the manufacturers, in a
colour brochure, which can be obtained from
the company at Monitor House, Station Road, the company at Monitor House, Station Road,
WWW410
Radlett, Herts. WD7 8JX.
Verospeed's new catalogue is now available, containing 2500 items of hardware, components and instruments. The company will supply one off orders. Copies of the catalogue are available
from Verospeed Ltd, Stansted Road, Boyatt
Wood, Eastleigh, Hants. SO 4 HYY. WW411

The IEC have issued an international standard to achieve compatibility in the sub-system nd combination of sub-systems used in satel ite earth receiving stations. The publication
sets conditions for the measurement of return
loss, input and output levels, amplitude and oss, input and output levels, amplitude and
frequency characteristics, static a.g.c chara frequency characteristics, stataic a.g.c.c. charac-
teristics, dynamic a.g.c. characteristics, and the group-delay/frequency characteristic. Interna-
ional Electrotechnical Commission, ional Electrotechnical Commission, 1 Rue
Varembe, 1211 Geneva 20 Swisern,

5
\qquad

 .
 .

 $=$

Amplitude sensing and control

by Peter Williams, Ph.D. Paisley College of Technology

THEORY

 obvious one is where that amplitude affects the behaviour of some associated circuit or where its value is involved in consequent calculations. Less obviously any increase linear range of the active devices. The harmonics resulting are returned to the input where intermodulation due to the non-linearities produces new components at the have the same frequency. These are equivalent to a phase-shift in the fundamental and shift. The amplitude control mechanism is essentially a negative feedback system in which some property of the output amplitude is sensed, used to modify the feedbackand hence to set the amplitude to a desired level. The first two networks contain elements whose resistance is temperature- and hence dissipation-sensitive. Their time constant is made long compared with the oscillation frequency. Amplitude then settles to a value at which the heating effect (r.m.s. dependent) brings the element resistance
The r.m.s. methods involve elements that consume power and have of necessity a dependence are added, alternative solutions become increasingly attractive That dition for sustained oscillation at constant amplitude is that the loop gain be identically
dital unity. When a non-linear network is included in the feedback loop then the loop gain
can exceed the critical value at low amplitude ensuring that oscillation build can exceed the coses the signal forces the non-linear elements into regions of their characteristics where the loop gain falls to less than unity. The amplitude stabilizes such that the mean value of the loop gain is at the critical level. Stabilizizg action is
instantaneous in that there are no time-constants involved ther than tage of the method is that it achieves its affect by deliberately distorting the feedback signal, though the remainder of the circuit may attenuate the harmonics as they pass through the frequency dependent network. The most common technique places a
symmetrical pair of diodes (or series connected back-to-back zener diodes) so as symmetrical pair of diodes (or series connected back-to-back zener diodes) so as to
increase the feedback at higher amplitudes. A field-effect transistor having a low dynamic impedance at low voltages and then going into current limit would have the same effect placed in the other limb.
A third method combines some of the advantages of the previous two. It uses only
electronic devices, consumes negligible power and can introduce negligible distortion. It has the disadvantage that a deliberate time constant has to be introduced into the sensing action, though this time constant can be varied to suit the oscillation frequency (a property not shared by thermisiors of lamps whose thermal time constants must be long compared with the period of the lowest desired oscillation frequency). The outpur
is peak-rectified and the direct voltage is applied to the gate of a field-effect transistor The on-resistance of the drain-source path is varied and can form part of a potential riverse biases the p-channel f.e.t. The value of r_{0} increases and with it voltage tha Because the f.e.t. characteristic is nun-linear it can only be used directly with very smal voltage swings - preferably $<V_{p} / 10$ where V_{p} is the pinch-off voltage. With additional direct feedback across the fe.t. as shown it is found that the linearity is markedil
improved. The resistance across the capacitor is a compromise between speed response and distortion; increased ripple worsens the second and is caused by attempting to improve the first.
The methods above have the amplitude sensing mechanism in the passive network,
the assumption being that the amplifier is perfectly linear it is eqally the assumption being that the amplifier is perfectly linear. It is equally feasible to
incorporate the non-linearities in the forward path i.e. in the amplifier. The disadvan tage is that the harmonics are then fully present at the output, the filtering due to the RC network only being effective in reducing the distortion present at the input. In both cases the distortion is minimized by arranging the loop-gain for small signals to be
only slightly greater than that required to sustain oscillation. This reduces the nonlinear excusions needed to bring the overall gain back to unity and hence reduces the distortion. If the non-linearities are symmetrical about the quiescent point then even methods are thus acceptable for simple RC oscillators even though the attenuation of harmonics offered by these networks is relatively small. With LC oscillators or certain RC oscillators based on high-Q active filters the constraint is removed. If a high-Q
band-pass circuit is driven by a square wave whose fundamental frequency is the filter centre frequency, then the harmonics are so reduced at the output that an almost pure sine-wave results. It is difficult to maintain the drive frequency at the filter centre passed through a squaring circuit then its input is a square-wave of the approprite frequency and constant amplitude. Provided the filter gain at the centre-frequency is constant then the constant amplitude square wave ensures an equally stable sinusoi-
dal output. The square wave can be obtained either by a simple diode limiter or with greater accuracy using a comparator with precision clipping. Antiphase feedback with greater accuracy using a comparator with precision clipp
diodes in the forward path of an amplifier are also found.

Amplitude sensing and control

These methods are mostly used where only approximate in action while using little power. The non-linearity makes analysis difficult.

- The f.e.t. drain current $\left.\mathrm{I}_{\mathrm{g}}=\mathrm{Kl}\left[\mathrm{V}_{G S}-V_{D}\right) V_{D S}-V_{D S}^{2} / 2\right]$

$$
\frac{I_{D}}{V_{D S}} \rightarrow k\left(V_{G S}-V_{p}\right)
$$

and is a linear function of the gate-source voltage. Hence vairy-
ing the gate-source bias varies the conductance and hence the For the second circuit

$$
V_{G S}=\frac{V_{D S}+V_{C}}{2}
$$

Substituting for $V_{G s}$ in the expression for I_{D} above

$$
\begin{aligned}
I_{D} & =k\left[\left(\frac{v_{D S}+V_{C}}{2}-v_{p}\right) v_{D S}-\frac{V_{D S}^{2}}{2}\right] \\
& =k\left|\frac{v_{C}}{2}-v_{p}\right| v_{D S}
\end{aligned}
$$

Hence the conductance

$$
\frac{I_{D}}{v_{D S}}=k\left|\frac{v_{c}}{2}-v_{p}\right|
$$

and is linear for all values of $V_{o s}$ while being a linear function of
 the feedback without introducing any additional distortion into the system.

- For a second-order transfer function $\mathrm{v}_{\mathrm{o}}=\mathrm{k}_{\mathrm{o}}+\mathrm{k}_{1} \mathrm{v}_{\mathrm{i}}+\mathrm{k}_{2} \mathrm{v}_{\mathrm{i}}^{2}$ and a

$$
\begin{aligned}
v_{0} & =k_{0}+k_{1} v \sin \omega t+k_{2} v^{2} \sin ^{2} \omega t \\
& =k_{0}+k_{1} v \sin \omega t+\frac{k_{2} v^{2}}{2}(1-\cos 2 \omega t)
\end{aligned}
$$

Hence there is a second harmonic term in the output which nal to the amplitude of the latter. Similarly higher-order terms result in higher harmonics, the absence of the nth harmonic in the output indicating the absence of the nth order term in the
transfer function. Symmetrical transfer functions are preferred in that the even-order harmonic terms are thereby cancelied so that the lowest harmonic is the third harmonic.

EXAMPLES

A thermistor has a maximum permitted dissipation of 3 mW and sets the output of a Wien bridge oscillator to 1 V r.m.s. win iv rmsigh
With 1 V r.m.s. total voltage, thermistor has p.d. of $\approx 2 / 3 \mathrm{~V}$ r.m.s. assuming a high gain amplifier.
$1=\frac{3.10^{-3}}{2 / 3}=\frac{9.10^{-3}}{2}=4.5 \mathrm{~mA}$ r.m.s.
Series resistor $R=\frac{1 / 3}{4.5 \cdot 10}=\frac{10^{3}}{13.5}=74 \Omega$
A suitable resistor might be 100Ω, to keep the thermistor well below its maximum dissipation.
2. At what output voltage does diode conduction commence in he simple diode amplitude control circuit?
Diode voltage at which current flow commences $\sim 0.5 \mathrm{~V}$. But iode voltage is $2 / 3$ of peak output
. Output voltage $\sim \frac{3}{2} \times 0.5 \mathrm{~V}$
R.m.s. output voltage $=\sqrt{ } 2 \cdot \frac{3}{4}=1.08 \mathrm{~V}$ r.m.s.

In practice higher values are required since this level correponds to only slight conduction, barely modifying the a
de response and requiring critical resistor adjustments.
3. The peak sensing circuit has $\mathrm{R}=1 \mathrm{M} \Omega$. If the frequency of exceed 2% peak-peak, choose the corresponding capacitance.
For small ripple, then as in simple recifier theory linear

$$
\begin{aligned}
& \frac{\Delta V}{\Delta t}=\frac{1}{C} \text { and } I \approx \frac{V}{R} \\
& \frac{\Delta V}{V}=0.02=\frac{t}{C R}=\frac{10^{3}}{G .10^{6}} \\
& C=\frac{10^{-9}}{0.02}=50 \mathrm{nF} .
\end{aligned}
$$

4. The ringing resonant circuit uses a filter with $\mathrm{Q}=10$ a centre-pak-peak. Determine the $\%$ 3rd harmonic at the filter output.
or square-wave of amplitude 1.2 V peak-peak, the fundamental

$$
\frac{4}{\pi} \times 0.6 \text { and } \frac{4}{3 \pi} \times 0.6
$$

Fundamental output $20 \times \frac{4}{\pi} \times 0.6$

$$
T_{v}=\frac{H s}{s^{2}+\frac{\omega_{n}}{Q} s+\omega_{n}^{2}}
$$

$$
\text { with } \mathrm{Q}=10 \text { and } \frac{\mathrm{HQ}}{\omega_{\mathrm{n}}}=20 \text {, i.e. } \mathrm{H}=20 \omega_{\mathrm{n}}
$$

$$
\text { At } \omega=3 \omega_{\mathrm{n}}
$$

$$
T=\frac{2 \omega_{n} \cdot j \cdot 3 \omega_{n}}{-9 \omega_{n}{ }^{2}+\frac{3 j \omega_{n}{ }^{2}}{10}+\omega_{n}^{2}}
$$

$$
=\frac{6 j}{-8+0.3 j^{2}} \approx 0.75 \mathrm{j}
$$

$$
\left|\frac{T_{\omega}=\omega_{n}}{T_{\omega}=3 \omega_{n}}\right|=\frac{20}{0.75} \approx 27
$$

\% 3rd harmonic $=\frac{1}{27} \times \frac{1}{3} \times 100 \approx 1.2 \%$

WIRELESS WORLD APRIL 1981

Cycling stille hertz

My heart-rending experience with the bike (Feb. issue) did not go unnoticed. Keith
Matthews, of the Wessex District Cyclists' Touring Association, writes to tell me not to be so lily-livered and to have another go (although he is much too polite to put in those words). It's all my fault, it seems something to do with my not being "bike
fit" and not having anything better to ride than a Moulton. Well, I'm quite ready to agree with him about my not being in shape for this sort of thing, but I always thought Moultons were nice little bikes. Maybe that's the trouble: I ought to have saddle like an emaciated razor blade and handlebars bent down to somewhere near the front hub.
I am considerably encouraged, however, by Mr Matthews' assertion that most car, formed that I cannot be a cyclist until I graduate - maybe by riding the three miles without my feet touching the ground or being provoked to personal abuse) be-
cause they realise that if they hit you, you cause trey realse that if they hit you, you
will probably bleed all over the paintwork, which will mean a visit to the car wash, a matter of some inconvenience and expense.
The
The real point of his letter was not,
however, all the above, but was however, all the above, but was contained
in the last sentence. He assumes that I shall take up my cycling career again after its disastrous start, and will want to try the bike computer this all started with in the February issue. When I do, he says, I shall
discover that it is unreliable above 30m.p.h. (my italics). That, I think, adequately demonstrates the gulf that separates us bikies from real cyclists. Thirty miles an hour! Come now, Mr Mattprogress than that. They used to say that people would suffocate and die at speeds over $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., and for all I know, they could be right. No, as long as I go fast enough to avoid the danger of falling off one. I have no ambition to achieve the yellow jersey to go with the plaster and bandages that would be the certain result of my travelling at $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Thing-um-a-jig

O frabjous day! Calloo! Callay! The dual snubberless Schotky is with us! The dual I do beg your pardon - I was so overcome by the arrival of a bit of paper announcing the availability of the d.s.S. that I felt a little outgrabing of the old
momerath was permissible. But it's all right - I'll stop now, or Ed. will vorpal the page right here.

Isn't it lovely, though? Anyone whose magination is untouched by a chance to use a dual snubberless Schottky must be a cold fish indeed, I should think. Not just one, mark you, but a dual package of the
frumious little beasts. Now that they're here, and not before time, if you ask me, we've got to find something really beamish to do with them, before some dreadful old square wites in to say they're intended as rectifiers, or some such earthbound fate. a dual snubberless Schottky is not a device you can tie downto anything too specific. It needs a free rein - to be allowed to breathe and develop in an atmosphere of (Oh, look, is the
this? Ed.) his? Ed.)
ob can be sometim how frustrating this job can be sometimes. I was only going to say that a d.s.S. could be the very thing for Hunting the Snark, each player being armed with a paddle-controlled vorpal blade. Every time a v.b. went 'snickersnack' the d.s.S. would light up, or something.
Well, it's only a thought. You can't give a device a name like dual snubberless
Schottky and expect people to use it for anything too serious.

Spoilt by choice

've been watching the domestic television recording scene for some time now (video, it appears to be called, for some reason) with the kind of feelings I would expect Neanderthal Man to have experienced heads down at the stonemonger's. All he wanted was a couple of dozen plain, ordinary arrowheads for the start of the bronto-shooting season and here was this character offering him umpteen models to chipped, mind you, but totally incompatible. Manners were fairly elementary then, of course, and for such an act of thoughtlessness, Neanderthal was quite likely to and use his skin for trousers, appeals to and use his skin for trousers, appeals to strong, they were, in those times, and direct to the point of rudeness. Time has had its effect on Homo sapiens and I'm not sure that a bit more directness dealing with all these clever people who keep on inventing video tape recorders and video disc players that do more or less the same job but are just different enough to prevent you using the software from one think that they are deliberately contemptu-
ous of the public's needs and wishes: in act, I don't even think they give much thought to the public's needs and wishes, apart from the need to 'create' a market and persuade people to buy their wares. If equivalent to the arrow shaft should be $1 / 4$ in in diameter, they'll go ahead and make millions of arrows to fit, regardless of the fact that someone else is making hem $5 / 8 \mathrm{in}$ in diameter, and has been for years.
I's no good at all saying that it's up to people who simply mant up: how many people who simply want to record the
television Shakespeare cano Nationvide to a more convenient trime are in a position to make a difficult technical how between the different v.c.rs? And how many will be able to decide between or realise methot you of reading a video disc, on a JVC player, while all the time consid ering the claims of several firms to have the best disc library?

Quiet, please! It's breakfast time

When I was a bit younger, I used to have a finely tuned timetable in the morning. Everything was worked out to the nearest couple of microseconds, and a few seconds
spent in putting a new blade in the razor spent in putting a new blade in the razor,
or a serious lapse in concentration resulting in the soap getting itself lost in the bathwater could cause havoc. Many's the time I've been ejected from the house
without a second cup of coffee. without a second cup of coffee.
don't have to drive my wife to school since she gave up teaching and, for another, I've learned more sense. The move to Sutton has helped, too. I now take my mornings very gently, luxuriating over a leisurely
bath, savouring a proper breakfast and invariably having a second cup of coffee. Even so, taking all this gracious living into account and making due allowance for the need to keep abreast of world affairs, I
can see no possibility of television getting a can see no possibility of television getting a
look in at that time in the morning. There are many things I want from life, but television with my crispy bacon and scrambled eggs is not one of them. As far as I am concerned, thanks, but no thanks, particularly if there are to be any of those orange juice, or Snappaflakes, or whatever. And what of the news itself? Most of it is quite bad enough when printed in a
newspaper, but spoken right out loud, just newspaper, but spoken right out loud, just
like that, by a television person - well. it's enough to curdle the milk.

PA GROUP \&

 PAGROUP\&DISCOUNITS

WILMSLO

KITS

Tel. 0625529599 for speaker drive units, kits, PA equip-
ment, mail order enquiries, and all export enquirie
enquiries.
Tel: 0625526213 for Hi-Fi equipm
Lighning service on telephoned credit card orders!
el. 0625529599 for speaker drive units, kits, PA equip-

PRICES PRER PAIR
CARRIAGE
E3.95 UNLESS OTHERWISS STATED

SEND 50p FOR 56-PAGE CATALOGU 'CHOOSING A SPEAKER' (or price list only free of charge) Export Catalogue $£ 1$ or $\$ 3$ U.S.

WW - 021 FOR FURTHER DETAIL

TRANSCENDENT 2000

SINGLE BOARD SYNTHESIZER

COMPLETE KIT ONLY
$£ 168.50$ + VAT!

NEW! TRANSCENDENT POLYSYNTH

Cabinot size 31.1" $\times 19.6^{\prime \prime} \times 7.6^{\prime \prime}$ (rear) 3.4" (front)

EXPANDABLE POLYPHONIC SYNTHESIZER

COMPLETE KIT ONLY £320 Theice $552+$ VAT (singio voice) EXPANDER, COMPLETE KIT £295

TRANSCENDENT DPX
MULTI-VOICE SYNTHESIZER

Another superb design by synthosizer expert Tin
published in
publishod in
Electronics Today International
COMPLETE KIT ONLY
$\mathbf{£ 2 9 9}$ + VAT!

 рошетRRAM

MANY MORE KITS AND ORDERING INFORMATION ON PAGE 93

Soldering equipment designed by specialists for professionals. ADCOLA IOI Soldering Unit
no moving pa
no moving parts

- no tip voltage
- no mains interference
- no real maintenance costs (bit/tip changes only)
- variable lockable temperature $120^{\circ} \mathrm{C}-420^{\circ} \mathrm{C}$ - total 50 watt electronic control ($\pm 2 \%$) - simple plug-in bits/tips
- electrical safety approved 240 V 24 V
- easy tool interchangeability from one Unit
to another to another
~orcomplete $\mathbf{2 0 0 1}$ Soldering Station

Soldering tool and control unit as Unit 101 but with the additional features

- filtered two speed fume extraction
- built in bench lighting
- solder reel dispenser
- clear bench area
- Adiron ${ }^{\circledR}$ long life bits/tips the same range
as that for Unit 101 as that for Unit 101

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £85.00 + VAT
This easy to build version of our world.wide acclaimed $75 W$ ampilifir kit based yon
circuit boands

thove 2 kits are supplid with
$\mathbf{T 2 0}+\mathbf{2 0} 20 \mathrm{~W}$ STEREO AMPLIFIER $£ 33.10$ + VAT

 READ ALL ABOUT IT! in electronics today

BLACK HOLE choralzer

\square
$\bullet \bullet \bullet \bullet$

CHROMATHEOUE 5000
This verasailesssitem featured as a constructional aricicl in ELECTRONICS TODAY INTERNATIONAL has 5 .

MPA 200100 WATT (rms into 8 8) MIXER /AMPLIFIER Peneis size $19.0^{\circ} \times 3.5^{\prime \prime}$. Dopth $7.3^{\prime \prime}$

MATCHES THE COMPLETE KIT
 CHROMATHEQUE 5000
PERFECTLY!
f49.50 PERFECTLY! $£ 49.50$ + VAT!

SP2-200 2.ChANNEL 1oow AMPLFER - NEW KIT!

MANY MORE KITS ON NEXT PAGE! OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

$\begin{array}{lr}\text { PORTWAY INDUSTRIAL ESTATE } & \text { ANDOVER } \\ \text { ANDOVER HANTS SP10 3NN } & (0264) 64455\end{array}$
Value Added Tax not included in prices

 expori ondoecs: :o vat. Postage charged at actual cost plus $£ 1$

(D-Larase

New Profile Amplifiers- Two New Series

NO QUIBBLE 5 YEAR GUARANTEE 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE

NEW PRE-AMPS
 HY6 (mono) and HY66 (stereo) are new to I.L.P's range of advanced audio modules. Their improved characteristics and styling ensure their being compatible with all I.L.P to get the best possible reproduction from your equipment HY6 and HY66 pre-amps are protected against short circuit and wrong polarity. Full assembly instructions are provided Mounting boards are available as below
 Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$. HY66 - $90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost 500 mV : Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$.
 HY6 mono £6.44+97p VAT Connectors included
 HY66 stereo £12.19 +£1.83 VAT Connectors included
 B6 Mounting Board for one HY6 78p+12p VAT
 B66 Mounting Board for one HY66 99p + 15p VAT
 NEW POWER SUPPLY UNIIS
 Of the eleven power supply units which comprise our current range, nine have toroida transformers made in ourowniactory. Thus these I.L.P power supply unitsare space poweramps you choose
 PSU30 $\pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY6 or $6 \times$ HY66 $\quad 84.50+0.68 \mathrm{p}$ VAT PSU36 FOLLOWING WILL ALSO DRIVE I.L.P PRE-AMPS
 - ALL THE FOLLOWING USE TOROIDAL TRANSFORMERS
 PSU50 for use with 1 or 2 HY60's
 PSU60 for use with 1 HY120
 PSU65 for use with 1 MOS120
 PSU70 for use with 1 or 2 HY120's PSU75 for use with 1 or 2 MOS120
 PSU15 for use with 1 or 2 MOS PSU90 for use with 1 HY200 PSU95 for use with 1 MOS200 PSU180 for use with 1 HY400 or 2 HY200
 \star Freepost facility When opdering or writing aboutII.L. Pproducts, you do not need to starmp the envelope. Mark it FREEEPST plus the code shown in the address below. We pay the postage for you.
 * TO ORDERse indandcrossed. Or pay by ACCESSO or money order payable fo I.L.P Electronics in registeredenvelope; ifC.O.D. payment is wanted, please add 11.00 to TOTAL value of order.

To: I.L.P ELECTRONICS LTD. CANTERBURY CT2 7EP

I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Access/Barclaycard Account No

GMt ELECTRONICS PROJECTS

 | TELETEXT DECODER BOARD + REMOTE HAND CONTROL | $£ 135-90$ | $\varepsilon 160-00$ |
| :--- | :--- | :--- | :--- |
| TEETEXT COMPATBLE EUNER AND P.S. U. | $\varepsilon 46-90$ | $\varepsilon, 57-00$ | TELETEXT COMPATIBLE PAL ENCODER + MODULATOR F.E.T. OUTPUT IOOW MONO POWER AMPLIFIER MODULE $£ 27-50$ \& 35-00 X-AAND DOPPLER RADAR ALARM MOOULE - MARK II § $35-90$ £ 44-00

 SIMULATED INERTAA MODEL TRAIN CONTROLLER SIMULATED INERIA SLOT RACER CONTROLLER
MODEL TRAIN STEAM SOUND SIMULATOR MOOULE

S 100

Do You Have All These Facilities On Your S 100 System, With Just Two Boards?

SEMEL

MICROCOMPUTER - HARDWARE - SOFTWARE 3c Barley Market Street;Tavistock, Devon PL19 0JF Tel. Tavistock (0822) 5247. Telex: 45263

CLEFelectronic MUSIC

high performance but low costaudio signal generators RE WAV

TELERADIO ELECTRONICS 325 Fore Stroen, Edmonton, London, N OPE Tel: 8073719

WIRELESS WORLD APRIL 1981
and

102
 Toroidal Power transformers

MODERN LABORATORY TOOL HOUSED in ATTRACTIVE STEEL CASE	
\star HOLD SIX EPROMS	
\star SAFETY INTERLOCKED EPROM TRAY	
\star SEPARATE ERASE INDICATOR	EPROM
\star MONEYBACK GUARANTEE	ERASURE
	Send cash with order to: NORTHERN ELECTRONICS 51 ARUNDEL STREET MOSSLEY, LANCS. OL5 OLS Tel: 045754119

Electronic Measurement Services
REPAIR \& CALIBRATION SPECLALLSTS OF TEST \& MEASURING INSTRUMENTS
¿ast turn around time
太 High quality backed by warranty
Competitive rates
¿ Corritictitition if requ
Nationwide collection and delivery service
Stockport Road, Longsight, Manchester
061-273 4653 ww No. 032

ww

Happy Memories

4116	200 ns	$£ 2.25$
2114	200 ns	$£ 2.95$
2708	450 ns	$£ 3.95$
2114		
2716	5 volt	$£ 2.20$

Memorex Soft-sectored mini-discs for PET, TRS-80 etc Supplied in FREE LIBRARY CASE, £19.95 per 10
$\begin{array}{lrl} & \text { Low Profile I.C. Sockets by "'Texas" } \\ \text { P } 1416182022 & \\ \text { Pins } & 842840 \\ \text { Pence } & 101112161720212837\end{array}$
Memory Upgrade Kits for Apple, 2020; TRS-80, etc.: from $£ 18$, please phone. Quantity prices available on
request. Government and Educational Orders welcome. Trade accounts opened.
All prices include VAT. Postage FREE on orders over $£ 15$, otherwise add 30 p
Access and Barclaycard welcome
HĀPPY MEMORIES, DEPT. W.W.
GLADESTRY KINGTON
HEREFORDSHIRE HR5 3NY
Tel. (054422) 618

Memories
$2114 \mathrm{~L}-300 \mathrm{~ns}$
$4116-200 \mathrm{~ns}$
4116-200ns
$2708-450 \mathrm{~ns}$ 2716-450ns
74LS series
74LS240.
74LS240.

74LS245... £1.7
Bridge Rectifiers
25. Amp 50 volt.

25 Amp 100 volt ... 25 Amp 200 volt ... $£ 1.26$ 25 Amp 400 volt ..68 25 Amp 600 volt ... $£ 2.1$

Please add 50 pence for carriage. All prices EXCLUDE VAT

STRUTT LTD.

ELECTRONIC COMPONENT DISTRIBUTORS
3c BARLEY MARKET STREET, TAVISTOCK DEVON, ENGLAND PL19 OJF Tel. Tavistock (0822) 5439/5548. Telex: 45263

104

the only magazine in Britain that gives the amateur enthusiast and professional engineer alike a comprehensive up-to-date coverage of TV technology. Coverage includes the latest developments in circuitry, video and long distance television . . . with a special emphasis on servicing and fault finding.

Regular construction articles have included test equipment, monochrome/colour receivers, monitors and video cameras.

THIS MONTH

Construction
An 'Arrow' Generator
A special joystick control unit for inclusion between camera and monitor... drawing attention to points on a TV display by use of a moveable arrow.
Servicing
Greaty increased reliability of modern TV sets means intermittent faults are accounting for a much larger proportion of the servicing workload. We offer guidance on tracking down these, often difficiult tolocate, faults. Review
THORN TX10 Chassis We review the latest Thorn chassis probably the equal of any in the world.

TEEEUS5O1 The monthly magazine that keeps you in the picture!
$60 p$

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred AUDIO FREQUENCY
TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKE IT OUR RANGE INCLUDES

E. A. Sowter Ltd.

E. A. SOWTER LTPD. (Establishod 1941), Reg. No. England 303990
The Boat Yard, Cullingham Rood Ipawich IPP $2 \in G$, Suffolk
 Phone: 04735779480473219390 WW - 050 FOR FURTHER DETALLS
xLR CONNECTORS

 $\underset{\substack{\text { fi.34, } \\ 60.75}}{ }$

BELCLERE AUDIO TRANSFORMERS

KELSEY ACOUSTICS LTD 28 Powis terrace, london wil luh
WW-066 FOR FURTHER DETAILS

 from $£ 3.15$ per 100.
Carbon Film Resistors $1 / 4 \mathrm{ww} 5 \%$
f2.50 per 1.000 per value, car-

 Lists available of other wattages

PBRA LTD.

 Member Crystalate Group

㘶 L.J.ELECTRONICS LIMITED
 MICROELECTRONIC AND MICROPROCESSOR SYSTEMS FOR EDUCATION

\star VIDEO
 MONITOR BARGAIN \star

manunutactured by US Incoterm Corporation, imported Dy large maintrame

Ne believe thess are the finest monitors available at any price
Trate encuires invited
rind
Trade enguirios invied.
Only $\mathrm{E75}$ each + VAT. Carriage $\mathrm{E7} .50$.

KEYBOARDS

OTHER BARGAINS

 Mary other items plus full range of PDPP8/11 modules in stock - please telephone
for ritast ist. V PAT and carriage extra.
CHILTERN ELECTRONICS
B.C.M., Box 8085, London WC1N 3XX. Tel. 0494714483

COME TO SPILTH ELECTRONICS FOR ALL YOUR CB NEEDS

ANTENNAS COAX CONNECTORS MIKES SWR METERS BOOKS 40 \& 80 CH RECEIVERS

SPILTH ELECTRONICS

3D Barley Market Street
Tavistock, Devon
Phone 08225865 Telex 45236

WIRELESS WORLD APRIL 1981
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS ${ }^{33}$ whitehorse road, crovoon

 XYPLOTTER, $574.75+57$ carriage.

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS
109

Communications
\bigcirc National Exhibition Centre
Birmingham, England 20-23 April 1982
WIRELESS WORLD APRIL 1981

- Measures signal to noise ratio down 20 dBs to 60 ClB
- Measures signal to noise ratio down to 65 dBs SNR
- SNR measurement is possibite in the presence of sync pulses, some

解

- Visual display on oscilloscope ensures measurement confidence
- Full CCIR weighting filter sets are available

DIGI-TEL ELECTRONICS

LOW VOLTAGE POWER DRILLS AND ACCESSORIES

 VAT and Postage.
Send 25 p or Cor Catogue
A. D. BAYLISS \& SON LTD. PFERA WORKS. REDMARLEV Barclay card. Acesss Welcome
Tel. Bromesberrow (053 181) 27

Your Opportunity to Sell Communications Equipment and Systems
Communications 82 will be the sixth in a biennial series of expositions - now recognised as the World's leading international events for selling communications equipment and systems. It comprises a major international exhibition and integral conference plus a programme of social events with guest speakers of international stature.
Communications 82 will be a total communications exposition, covering all systems, equipment and components used in communications, including ransmission, switching and terminal equipment as well as associated products and services for recording, testing maintenance
Communications 82 will be total also in user appeal, spanning the boundaries between civil and military, public and private, industry and commerce, fixed and mobile, in the same way as do the technologies involved.
Communications 82 , therefore, offers a unique opportunity for you to sell your products to potential opportunity for you to sell your products to potential
customers from all over the world - at Communications 80 there were well over 16,000 visitors from 70 countries.

If you manufacture or sell communications equipment and systems nationally or internationally, you cannot afford not to participate in Communications 82 - the total communications exposition.

MOR
tach and post to
Terry Brandon, Sales Manager Industrial and Trade Fairs Limited Radcliffe House, Blenheim Court Solihulin, West Midlands B91 2BG England
Tel: 021-7056707 Telex: 337073

Communications 82 is organised by
Industrial and Trade Fairs Limited for Tony Davies Communications

I am interested in exhibiting at Communications 82. Please send me the full Data Pack.
Name
Position
Company
Address

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s) Your enquiries will be passed on to the manufacturers concerned and the manufacturers concerned and direct in due course. Cards posted direct in due course. Cards post
from abroad require a stamp. from abroad require a stamp.
These Service Cards are valid fo These Service Cards are vali
six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by you may apply direct to us by his page. You may bolso of this page. You may also apply to the agent nearest to you, t
address is shown below.
address is shown below.
OVERSEAS SUBSCRIPTION AGENTS

The 'SERIES TWO' MESSAGE REPEATER

with 4-track capability, using all four tracks to provide separate or simultaneous playback

Send for details of any item, and our full brochure of the comprehensive Reditronics range of sound communications equipment.

REDIFFUSION REDITRONICS LTD., La Pouquelaye, St Helier, Jersey, Channel Island
Tel: Jersey (0534) 30321 Telex: 4192341
U.K. DEPOT: River View Road, Bitterne, Southampton, Hampshire, U.K. Tel: Southampton (0703) 555566

Distributors for Greater London and Home Counties:
Musitune Lto., 388 Green Lanes, London N4 1 DW Tel: $01-8021163$

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professional
Readers ONLY.

429 Brighton Road
Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, April 1981 wW 164
UK subscription rates USA \& Canada subscription rates
1 year: $£ 10.00 \quad 1$ year: $\$ 33.80$

1 year: $\$ 33.80$
Overseas 1 year: $£ 13.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value. IPC BUSINESS PRESS Ltd.

Name.
Address \qquad

WIRELESS WORLD

Wireless World, April 1981 WW 164 Please arrange for me.to receive further details of the products isted, the appropriate reference numbers of which have been entered in the

Position in Company
.................

Nature of Company/Business
\qquad

LOOK!

ANALOGUE

OR DIGITAL
 MULTIMETERS

ex stock from:

A dual trace 10 MHz high sensitivity oscilloscope Ata price of $£ 240.00+\mathrm{VAT}$.
incorporating all the latest high technology Ensures British leadership in the low cost high developments to bring you all these outstanding features as standard. - $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.

- 2 mV sensitivity on both channels.
- Add and invert facility

Probe compensation.
Push button X-Y.
Trace locate.
$10 \mathrm{MHZ}(-3 d B)$ over full display.
Complete with probes.
performance oscilloscope market.
Distributors required in certain countries

Pixmore Avenue, Letchworth. Herts SG6 1JJ. Tel: (04626) 72771

I wish to pay by Barclaycard/Trust Card.

 WW - 8 FOR FURTHER DETALLS

Professional ASCII Kevboards

THE 'APPLE' COMPUTER KEYBOARD
:
\vdots
\vdots
\vdots
\vdots

Escapens shitur reurn and resest keys
Complete with Circuit and Data
Ideal for Ise with TANGERINE, TRITON, TUSCAN, APPLE and
Ex-stock from Henry's
This is definitely the BEST BUY. Supplied BRAND NEW in manufacturers original packing ANT.STATIC).
Just post remitance, toal 3 E35.95 (incl. VAT \& Post).

FACTORY CLEARANCE SERVICES CO.

a grand clearance sale of new compuTER SPARES WILL BE HELD AT OUR CODICOTE SATURDAY, 4th APRIL AND SATURDAY, 11th APRIL

COMPRISING OF:
Keyboards.
Keyboards
Teletype Printers.......................
Pr
Power Supply units, $5 \mathrm{v}, 10 \mathrm{v}$,
$18 \mathrm{v}, 24 \mathrm{v}, 1-\mathrm{amp}$ to $20-\mathrm{amp} . . .$.
10-Tonne of Electric Motors Fans and Blowersfrom 57.50 5 -Tonne of Transformers.. Plus: Resistors, Capacitors, Semiconductors, Rectifiers, Solenoids, Relays and thousands of electrical and mechanical assemblies. Jumbo bags of mixed components................... 5

Come along and browse, bring your own sandwiches!

A. R. DAVIES (FACTORY CLEARANCE)
 28 ST ALBANS ROAD, CODICOTE NR. OLD WELWYN. HERTS
 TEL: STEVENAGE (0433) 833417-82068

WW-074 FOR FURTHER DETALS

TV TUBE REBUILDING

 Full training courses are individuailly tailored to co customers

För full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Wilis Road, Croydon, CRO2XX
$01-684142 / 01-6840246$
Ww - 073 FOR FURTHER DETALLS

WIRELESS WORLD APRIL 1981

READ ALL ABOUT IT - all the latest on home entertainment equipment and ideas in ..

HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home to video recorders and from radios to electronic organs. Backed by authoritative articles on developments in the world of Hi Fi , plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1st November 1980. Price $£ 3.00$

If you have difficulty in obtaining your copy order direct from the
publishers @ $£ 3.50$ inclusive.

ORDER FORM
To: General Sales Manager, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. ${ }_{\text {(please print) }}^{\text {Name }}$ Address \longrightarrow

Please send me........copy/copies of the Hi Fi
Yearbook and Home Entertainment $1981 @$ @3.50 Yearbook and Home Entertainment $1981 @ £ 3.50$
ncluding postage and packing. Cheque/postal order

wW-081 FOR FURTHER DETAILS

Visual monitoring of anything, anywhere, by phone, in seconds, with Robot Phoneline TV.
Robot's Phoneline TV systems provide a low-const, efficient solution to
the problem of visually monitoring remote installations, meters, , gauges.

 converts the broadband video signal from the camera to narrow banc
audio tones tor rransmision via the dial telephon newor or vioce
grade radio, then to a video signal again to dishay

 cassette tapes. For fast, uncomplicated, ine inpenssivissions on audial monitior
ing of ayn subject anyplace, Robot Phoneline TV is the answer.
or call for more r call for mor e information
and descriptive literature.

ROBDT
ROBOT RESEARCH INC
WW - 048 FOR FURTHER DETAILS

Semi-Conductors • I.C.s - Optodevices \bullet Rs and Cs in great variety - Pots • Switches • Knobs • Accessories • Tools • Materials • Connectors
electropatue lto.

wW- 083 FOR FURTHER DETALLS

WIRELESS WORLD APRIL 1981

ORION SCIENTIFIC PRODUCTS LTD. 10 Wardour St., London W1

Belle Vue Radio and Electronics Exhibition in the LANCASTER HALL
On SUNDAY, MARCH 29,198 Doors open at 11 a.m.
The North's Premier Amateur Radio and Electronics Event
 Stands
mor
Office and Raynet Stand Home Office and Raynet Stands
Belle Vue has ample car parks
F.M. talk-in on GB3NRS \& G8NRS/A on 145 MHz Chs S.22, R2, R6, and ADMISSION 40p-BY RAFFLE TICKETANDEXHIBITION PLAN
ENTER AT REAROFBEEEVUEOP.MAIN CAR PARK


```
Advertisements accepted
up to }12\mathrm{ noon Monday, 23
March, for May issue
subject to space being avail-
able.
```

DISPLAYED APPOINTMENTS VACANT: £12 per single col. centimetre (min. 3 cm) BOX NUMBERS: $£ 1$ extra. (Replies sho, minimum three line advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.) PHONE: JAYNE PALMER, 01-661 303
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONIC OPPORTUNITIES

 £5,000-£15,000Microprocessors - Minicomputers - Digital Analogue - HF - VHF - UHF - Microwave Where does your skill and interest lie?
Design? Test? Sales? Service? Systems? or perhaps Software?

* Our clients are drawn from all sectors of industry: There are opportunities for Managers, Project Leaders, Engineers and Technicians.
* Most UK locations and some Overseas
* Make your first call count - Contact MIKE GERNAT on 076-384-676/7 (24 hours) ELECTRDNIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED 148-150 High St., Barkway, Royston, Herts SG8 8EG.

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY ECTRICAL AND

PRINCIPAL OR SENIOR

 TECHNICAL OFFICER (DIGITAL/MICROPROCESSOR)Applications are invited for the above-mentioned position in the
Department of Electrical and Communications Engineering. Applicants will be required to have appropriate qualifications
and to be experienced in the fields of digital electronic equipment. Preferencen may be given to applicants with particular
experience in microprocessor development.
Salary: $\mathrm{K} 12450-\mathrm{K} 15275$. ($\mathrm{K}=\mathrm{ESStg}$. 0.6636). Appointment level
will depend upon qualifications and experience.
The initial contract will be for three years; other benefits include,
a gratuity of 24% taxed at 2%, appointment, repatriation fares, a gratuity of 24% taxed at 2%, appointment, repatriation fares,
leave fares for the staff member and family after 18 months of service, settling-in and out allowance, six weeks' paid leave per
year, education fares and assistance towards school fees, free year, education fares and assistance towards school fees, free
housing. Salary continuation and medical benefit schemes are housing.
available
Detailed applications (two copies) with curriculum vitae, to-
gether with the names and addresses of three referees, should gether with the names and addresses of three referees, should
be received bv the Reogistrar, Papua New Guinea University of
 March, 1981. Applicants resident in the United Kingom shous
also send an additional copy to the Association of Com-
monwealth Universities (Appts). also send an additional copy to the Association of Com-
monwealth Universities (Appts), 36 Gordon Square, London
WC1H OPF.

A division of SOS Bureau Ltd
The SOS Group
Trading as:
SOS Staff Bureau
SOS Industrial Staff
SOS Senior Appointments
The following are a selection of the many vacancies currently on
FIELD SERVICE TECHNICIAN! ©6,000! CAR! COMPUTER
SYTEMS! W. LONDON! A.T.E ENGINEER! £8.000! ATLAS
 CMOS EXPERIENCE USEFUL! COMMISSION PROTOTYPE! PERIENGE MICRO COMMUNICATIONS! EOUIPMENT AND TRACKING CONTROLS SERVICE SUPPORT ENGINEER! 59,000
ORGANISE MAINRAME AND PERIPHERAL! INSTALATION SALES ENGINEER! E9,000! CAR! NORTH ENGLAND! RELOCA TION PACKAGE! TELECOMMUNICATIONS!

For information on these and other vacancies nationwide - $\stackrel{-1}{ }$ please contac.
Tel. 5677466.

Company Communications Controller

c. $£ 10,000$

As a major name in aviation and communication services for the world, maintaining and upgrading our own lines of communication is
customers and suppliers, for instance, are constantly in contact through telex, telephone, data transmissions and post. The task of our Company Communications Controller is to supervise both the technical and human
aspects of the existing network and to advise on the introduction of new aspects of the existing network and to advise on the introduction of new
computer based information handling systems throughout the group. He or she will work from Southall, liaising with suppliers and with He or she will work from Southall, liaising weth iupliers and wish
service staff on maintaining equipment. There is also a large amount of advisory and analytical work involved, in order that existing systems may be improved:
Candidates should possess an HNC in telecommunications engineering
and should have worked for at least five years with and should have worked for at least five years with a manufacture,
major telecomm. user, or in Post Office telecommunications. They major telecomm. user, or in Post Office telecommunications. They
should understand business communication problems, and ought to be capable of expressing technical solutions clearly to nontechnical management
Benefits include a staff restaurant, a pension and life assurance scheme, relocation expenses where
applicable and 5 weeks' holiday plus bonus applicable and 5 weeks' holiday plus bonus. Please apply, in writing, to John Callow, IAL,
Aeradio House, Hayes Road, Southall, Middx, quoting Ref. K/024. Tel: 01-843 2411 .

Sony Broadcast
 success story means even more career opportunities! Tremendous growth and success has created the need for even more first class staff at the Basingstoke International Headquarters broadcast equipment.
 UK Sales Manager/ess-
 £neg + car
 This is a new position created as part of our planned expansion programme The successiul candidate should

oossess experience of either
Production or Engineering Production or Engineering
Operations within a broadcast television environment. A knowledge of professional VTR's, editing
systems and cameras is necessar syhiltst previous sales experience is
wesirabe, though not essential desirable, though not essentia

Sales Engineers/Te Support for Weniners for

Competent engineers experienced in
video cameras and/or VTR's are sought to ioina ant sales team. Successtul candidates are likely to be
in the age range $25-35$ and should be in the age range $25-35$ and should be
highly motivated and able to work on
their own intitiative Experience in their own initiative. Experience in
dealing with customers would be an advantage as would knowledge of a second European anguage. ravel
within the western European area will be necessary.
Engineers -
Engineers-
Commercial/Sales Applications Openings exist, at various levels for
engineers with a wide experience the TV Broadcast Industry, to utilize heir knowledge in a dynamic
commercial environment. The selected candidate will be self
motivated, capable of working with a motivated, capababe of working with a
minimum of supenision, and will be appointed to our Proposals/ , will Quotations section. He or she will
have the abbility to prepare detailed and concise customer presentation
and
and quatations complete with pricing
information. information.
Previous
experience cemmesirable, however not
If you like the thought of enjoying the success of world leadership then write in strict confidence to Barry White, Personne/ Manager, Sony Broadcast, now! And please don't forget a CV.
CAPITAL HOUSE
29-30 WINDMIL STREET STREET W1P 1HG
LONDON WEL: $01-6375551$
APPOINTMENTS LTD. LONDON TEL: $01-6375551$
THE UK' NO, 1 ELECTRONICS AGENCY
Design, Dev. and Test to $£ 10,000$
Ask for Brian Cornwell
SALES to $£ 12,000$. plus car
Ask for Ken Sykes
FIELD SERVICE to $£ 10,000$ plus car
Ask for Maurice Wayne
We have vacancies in ALL AREAS of the UK Telephone: 01-6375551 (3 lines)

Sony Broadcast Ltd.

City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Challenging positions at home and abroad RADIO TECHNICIANS COMMUNICATIONS ENGINEERS

and EAE Lioad.

Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of $\mathrm{HF}, \mathrm{MF}, \mathrm{VHF}$ and UHF, and Engineers (preferably qualifie to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter. In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Ov.
ould be up to $£ 20,000$ - plus tax concessions and generous home leave.
The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.
The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick - but
where relocation is necessary, we will give generous assistance with removal, where relocations ith

Please apply, with details of your career to date, to: Personnel Manager, EAE Limited, Dept WW, Offshore House, 284/28
Norfolk NR31 OJB Telephone 049358541

EAELimited

INNER LONDON EDUCATION AUTHORIT
Television Centrre, Thackeray Road, London, sws MOBILE SECTION ENGINEER ST3

The mobile section operates colour broadcast standard television faciir-
ties incluuding a three camera (link 120) mobile contril ooon and batery portable equipment (Sony BVP, BUU.. The main function of the section is
fomake observational classrom recordings for use it teacher education
both in
 duties and driving of venicles. A current driving licence
and training will be provided leading to an $H G V$ test.
The engineer will join a team of three other engineers who are jointly
responsible for the operation and maintenance of the section's equip-

 current broadcast engineering practices.

Hours of work will be in accordance with th
(the normal working week being 35 hours).
Further details available from the Mobile, Videorecording Section, tele-
phone 6229966 . Salary within the scale $£ 8,115-\mathrm{f}, 709$ (plus an irregular hours allowance
of $£ 156$ per a nnum).

TiN

SENIOR ENGINEER
ENG/OB Maintenance
Salary: £11,406 p.a.
Independent Television News Limited has vacancies for two
Senior Engineers in their expanding ENG/OB Maintenance Sec Sen
the at ITN House, London, W. 1 .
The members of a small team The successful candidates would be members of a small team
responsibe primarily for the maintenance of ENG equipment
including Sony BVU responsible primarily tor the maintenance of TNG equipmen
including Sony BVU series U-matics, RCA TK7CC and Sony
BVP330 cameras, TBCs and associated portable equipment BVP330 cameras, TBCs and associated portable equipment.
The esection is also responsible for the elong-term maintenance of The section is also responsible for the long-term maintenance of
our two camera Outside Broadcast Unit.
The work would occasionally involve travel with ENG teams to remote locations.
Previous maintenance experience with U-matic equipment and/ Pre lightweight cameras is essential
Generous pension

Please telephone the Personnel Office on 01-637 3144, quoting.
reference number 30301 for an application form.

SULTANATE OF OMAN

RADIO AND TV BROADCAST ENGINEERING
 VACANCIES

The Sultanate of Oman operates a modern colour television and radio broadcasting service with studio centres situated in the North and South of the country, the two centres being linked by satellite. High power VHF and low power UHF transmitters are employed to provide a 625 PAL TV service to
populated areas of the Sultanate. The radio broadcasting service uses HF, MF and VHF Transmitters of various powers. Both services are managed broadcasting service uses HF, MF and VHF transmitters of Due to Due to expansion of the service vacancies for a variety of posts have arisen and applications are invited
from suitable qualified persons.

TRANSMITTER ENGINEERS

For maintenance of high power VHF TV transmitters and low power UHF transposers, high
power MF, HF and VHF FM sound transmitters. The work will involve travel and in some cases overnight stops away from base. The transmittured by Siemens, Philips, Marconi and Continental Inc., U.S.A.

STUDIO ENGINEERS

For maintenance on cameras, vision mixers,
S.P.G.S., vision distribution systems S.P.G.S., vision distribution systems, telecine also be operational work, particularly on outside broadcasts.
The equipments employed are Philips LDK15 cameras, Bosch Fernseh KCU40 and KCP cameras, vision mixer units by C.D.L. and Bosch
Fernseh, telecine by Rank Cintel and Bosch Fernseh.

SOUND MAINTENANCE

ENGINEERS

To maintain a wide range of high quality sound

Applicants should be qualified to degree or HND level and have not less than six years' relevant experience. The senior positions require considerably more years of varied but relevant experience. In most cases a knowledge or Arabic -although not essential - would be useful.
Salaries, which are paid in Rials Omani, are fully remittable and tax-free and range from pounds
sterling 1100 to 1300 per month upards month (depending upon current rate of exchange) ,
Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.
Applicants should write stating age, nationality, qualifications and full details of experience to:
Ministry of Information and Youth Affairs, Post Box 600, Muscat, Sultanate of Oman, marking the envelope "Technical Office" in top left-hand corner.

VTR ENGINEERS

For maintenance on Ampex VR1200B and Bosch some operational work. During the forthcoming year it is intended that 1ing " C " Format VTR machines will be installed.

PLANNING AND

PROJECT ENGINEERS

To carry out planning for a wide range of transmitter installations for both TV and radio. Planning and Systems Engineers are also re-
quired for work on new radio studios to be constructed over the next few years. Successful applicants will be
directly involved with the nuts and bolts of the installation work, in some cases in remote areas. Applications are also invited for a number of and electro-mechanical services group groups feel you can apply your knowledge and expertise to the efficient running of these groups we will
be pleased to hear from you.
\qquad

Development Engineers in Digital Electronics

We have an important client in the Cambridge area who is about to embark apon a major development programme incorporating proje
valued at several million pounds. Over the last few years they have been developing and exploiting a specialised area of telecommunications, and to complete the highly specialist and skilled teams which
are involved in breaking new ground in digital development, two experienced Engineers are needed immediately.
They will ideally have experience of both hardware and software gained in a development environment where high standards and iminent deadlines are the norm. A A Degree standard of education is less important than experience on design and development and they will have the oppo.
manufacture.
Our client offers in return the opportunity to become involved in a hriving organisation which offers excellent terms and conditions of employment good career prospects and, most importan
opportunity to take digital electronics to new frontiers.

Please apply in confidence quoting Ref. KR77, to: Andrew Millhouse Ketchum Recruitment Limited 52 Bedford Row, London, WC1R 4LX 01-405 1260

IF THIS IS RECESSION WE LIKE IT
AT LAST EEECTRONCE
WORII APPRECLATED.
We have hundreds of vacancies which include:

REEEARCH ENGINERRMANAGER: for a group providing suppor to an
 12,000, BERKS.
 igs, etc. To fo 10.0000 .LONOD

 Conideditial. MIDLANOS.
 team Norking on
WEST COUNTRY.

 large inetration
f8,50. LiNONO.
DESIGN ENGINEER: mini and micro computer based control equipment
 compurtr encinerss: : acanacies htroughout UK in systems test, field service permanent site and teachnicieas surupoport.
For further details, please contact
Charles Airey Associates
4 Hammersmith Grove, London W6 ONA. Tel: 01-741 4011

ONE IN A MILLION?

Among the million or so leaving school or university this yeer there is a chance that one - po
development in audio
or: That person's first decision might well be to join QUAD in Huntingdon.
At school, he or she will have realised that a mplifier design is not just a At school, he or she will have realised that amplifier design is not just a
matter of having a listen or a fiddle with standard circuits and their
mart variations. Later will have come an adolescent stage of great
discoveries. "Increase the rise time to eliminate TIM"."Regulate the power supply for better imaging".
Following on from sur childish things will have come an ability to dilowing on from such childish things will have come an ability to
distinguish between the characteristic impedance of the medium and distinguish between the characteristic inpedance of the medium and
the third row of the dress circle and between peak flux density and the
rather rather gooey substance fed by spoon to small children. He or she will,
nevertheless, be sufficiently down to'earth to know that one newton is about the weight of the average apple.
1 in 10^{6} ?

Well, drop us
Mr. P. J. Walker
THE ACOUSTICAL MANUFACTURING COMPANY LIMITED
30 St Peter's Road Huntingdon, Cambs PE18 7 DB

DEPARTMENT OF NUCLEAR PHYSICS ELECTRONILSS TECHINICIAN (Gradle 5)
Salary 55249 - 6129 rising wef July, 1981, to $55695-66650$ Applications are invited for the post of electronics technician in
the Department of Nuclear Physics for interesting and challengAng workt Thent of Nuclear Physics for interesting and challeng-
ing work
taintenane
then assisting in the development and maintenance of a variety of equipment incorporating fibre-optic
data links, 8 and 16 -bit and bit-slice microprocessors, as well as data links, 8 and 16 -bit and bit-slice microprocessors, as well as
some analogue circuitry. Some experience is essential, as are willingness and ability to learn quickly.
Applications in writing together with the names of two referees should be sent as soon as possible to the General Administrator,
Department of Nuclear Physics, Keble Road, Oxford OX1 3RH. (967)

EXCELLENT SALARY
 + CAR + PENSION + BUPA + PROFIT SHARE

The position of DIRECTOR OF OPERATIONS requires a person with drive, initiative and clear thinking, to be able to deal with the day-to-day demands of this high technology Television Facilities Company providing Studio, VTR and O.B. services to its Clientele.
Loyalty, hard work and the ability to lead, will be rewarded by a career in the fast-moving TELEVISION SERVICE and the Operations Director and his/her colleague Directors will have the opportunity of long-term future career development. The Company will be looking forward to one of the senior Directors becoming the next Managing Director
The applicant must have Engineering ability and have worked or be working in a Broadcasting organisation and have high level Management experience plus that special "something" of being able to lead and drive for the achievement of the Company's policies.
The position of Director of Operations will be a Company Board appointment.
Please apply to the Sole Recruitment Agents in the strictest confidence quoting "OPS DIR 1981":

PERSONNEL \& ELECTRONICS LTD.

Triumph House
Telephone: 01-5738333
Telex: 934271
1096 Uxbridge Road Hayes Middlesex UB4 80

 \title{
THE LEADING TELEVISION FACILITIES
 \title{
THE LEADING TELEVISION FACILITIES COMPANY

 REQUIRES

 REQUIRES

 DIRECTOR OF

 DIRECTOR OF OPERATIONS
} OPERATIONS
}

Appointments

Can you develop our potential?

Ultra manufacture highly sophisticated communications equipment and are Europe's leading suppliers of Sonobuoys. Our Test Equipment department has been extensively reshaped with new laboratories being built with a view to expansion. We can now offer Test Equipment
velopment Engineers and Technicians a real opportunity to become involved in the latest technology coupled with positive career development.

Test equipment development engineer $\mathbf{~} \mathbf{6 5 0 0} \mathbf{£ 7 5 0 0}$ Working closely with our Senior Engineers and outside companies you wiill rrimarily assisis the Devisign Engineers in developin
Test Equipment Design In addition, you will develop systems and units Test Equipment Design. In addition, you will develop systems and
from outine specifications through to building prototype units. As the department is still in itits early stages you will have the opportunity to make e positive.contribution toi its formation and you w
alsobe expected to attend comprehensive training seminars and
exhibitions..

 With a minimum of 2 years practical experience in a repair
. repair and calibration of Proprietary and Purpose-Built Test Equipme In addition to 5 years practical experience in repair and calibration,
E.agineers.

For both positions we fer ousta that career prospects with a company that is
looking to the future. Apart from competitive salaries, we offer a sports \& social club, 23
days holiday contributory pension scheme days holiday contributory pension scheme
and a subsidised restaurant. For further information, pleasesetelephonhone lulie Forema
on 5780081 or write to her at man pOWTY
\square Communications Lit Ultra Electronic Communications Ltd
419 Bridport Road Greenford Trading Estate

Technicians/Junior Engineers
(Broadcasting Coverage)
If you like an outdoor life with plenty of travel all over the UK and are qualified to If you like an outdoor life wil plener
ONC/TEC level in electical enineering (or a related subject), we may have jus
the career opportunity for you. the career opportunity for you.
Working as a member of a smal
Working as a member of a small team, you would be involved in carrying ou
tests and surveys for our future television and local radio transmitter sites. tests and surveys for our future television and local radio transmitter stites.
A current driving licence is essential. Previous working experience should have involved testing or taking measurements.
Starting salary will be within the range $£ 4,280-£ 5,980$ per annum, according to experience. Further progres
after a period of experience.
IBA
INDEPENDENT
BROADCASTING
AUTHORITY
Please write or telephone for an application form quoting Ref: WW/575cc to
Glynis Powell, IBA, Crawley Court, Winchester, Hampshire, SO21. 2QA. Telephone: 822270 .
These posts are open

UNIVERSITY OF SURREY Television Engineers
ONCE IN A DECADE CHANCE! Join a small and lively team providing television services for
oaching and research. Now converting to high quality Video 80 teaching and research. Now converting to high quality Video 80
colour system, studio based but versatile and mobile. Photocolour system, studio based but versatile e and mobilie. Photo-
raphy, film, graphics and instrument workshop services avail-
 Tcations on scales between ${ }^{\text {and }}$ Write or telephone now: Staff
available where apporopiate. Write
Officer, University of Surev, Guildord GU2 5 SH. Telephone Guildford
(16) WW.

ELECTRONICS RESEARCH AT THE UNIVERSITY OF ESSEX
Graduates who have (or final year students who expect to ob-
tain) a first or upper second-class honours degro apply for research leading to a higher degree (M.SC., M.Phil. or
Ph.D.) in the following areas: A.D.) in the following areas.

Audio (high quality audio systems, music synthesis), Circuit
Design (computer-aided design, filters), Computer Systems architectures, languages, man-computer interaction, microprocessor systems), Optical Communications, ACousitc Noise and
Vibration Cancallation, Satellite Communication Systems Microwave and Millimetre Wave Prommunatication Systems,
cations Transmission (anation. cations Transmission (data transmission, filter, PCM, DPM),
Telecommunications Switching Systems and Software (com)puter control, traffic studies, network configurations), Visual
Displays and Television Engineering (computer isplays and' Television Engineering (computer graphics, $3-\mathrm{D}$
nd colour TV), Picture Coding and Processing (feature extracnd colour TVI, Picture coding al
ion, digital filtering, perception).

Further information and application form available from:
Professor K. W. Cattermole, Department of Electrical EngiProtessor K. W. Cattermole, Department of Electrical Engi-
neering Science (Ref. JAN/2), University of Essex, Wivenhoe
Park, Colchester

Appointmerns

Professional Careers

 in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of nnovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. you are interested to hear more, please fill in the

National Heart and Chest Hospitals Brompton Hospital

Medical Physics Technician Grade IV or III (ELECTRONICS)

We require a technician to work in a small but busy department which provides a comprehensive medical

electronics/physics service to this leading cardio-thoracic hospital.
Within the department the technician will be engaged mainly
in electronics work but other scientific or engineering skills in electronics work but other scientific or engineering skils
would be an advantage. In additition the technician will be would bed to work in clinical areas trouble shooting and advising staff in the use of equipment.
Salary within the range of $4931-$ fint On experience. For further intorm
Technician, Mr. P. Butler, ext. 4252 .
For application forms and job description contact Personn Manager, Miss J. A. Jenks, Brompton Hospital,
Road, London, SW3. Tel. 01-3528121 ext. 4357 .

NEW 1981

MODERN ELECTRONIC RCUITS REFERENC MANUA
\qquad Price: $£ 32.50$

 WEAMHE SATEMITE RX D900 S/A or $5 / 2 A$

P850
881
M1
Aven
A

$$
\begin{aligned} & \text { ADV } \\ & \text { ALI } \\ & \text { at } \end{aligned}
$$

$\begin{aligned} & \text { RADOO AMATEUR HANDBOOK by } \\ & \text { Price: }: \\ & \text { ARL } 1981 \text { ed. }\end{aligned}$
Hel THE ART OF ELECTRONICS by P. Horowitz
WORLD ELECTO TV Price: E1. 1.50
HANBBOOK WORLD RADIO TV HANDBOOK,
Price:
1981 Codition
ELECTRONIC PRINCIPLES 20.50

 INTRO. TO DIGITAL FILTERSR by T.
Price: E6.95 Terrel
MICROPROCESSORS AND
MICROCOMPUTERS FOR ENG.
 (Price: E5.65
*ALL PRICES INCLUDE
POSTAGE *

THE MODERN BOOK CO.

Specialist in in Scientific
ITechnical Boks

LONDON W2 1NP Phone 402.9176
Cosed Sat 1 P1 W.M. RADIO LTD (18974) G.W.M. RAD1. LTD, 40/42 Portland
Raad. Worthing susse. Telephone
S4897. for

.
eq
fa
sy

Classified CAPACITY AVAILABLE PCB ASSEMBLY
CAPaCITY AVAILABLE

TW ELECTRONICS LTD.

 | Sub-contract assembers and wirers to |
| :---: | :---: |
| the flecuronics industry |
| (9068) |

I.H.S. SYSTEMS
 tave assembly and testitg of circcuir
boors or complete nits in addition to
contract development.
 Telephone to arange for one of our
engineers to call and discuss your requirements, or send full details for
TEL. 01-253 4562
or reply to Box No. WW 823

 AIWAN OFFER PCBS AND ELEC

Classified

P.C.B. MANUFACTURE AND ASSEMBLY Wave Soldering and inspection. High type design Artwork trom your circuit type design. Art Fast turnaround. Endean Communications Services Ltd., Baileys Mill, The Cliff, Matlock, Derbys.

ELECRORNC DESIGM SERVICES
MICROPROCESSOR HAD WARE And

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 2$ PER LINE. Average
Minimum $£ 10$ (prepayable).
- Name and address to be included

Box No. Allow two words plus $£ 1$

- Cheques, etc., payable to "IPC Business

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION

NAME...
ADDRESS
..

WRELESS WORLD APRIL 1981

MARCOMI TM6936R UHF Convert Sideband Analyser. TF1101 RC oscillators $£ 65$ 6551 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM. TF $1152 \mathrm{~A} / 1$. Power meter. 25 W . 500 MHz £50. TF1370A RC Oscillator $£ 135$. TF791D Carrier Deviation Meter
U.H:F. SIGMAL GENERATORS TF $1066 \mathrm{~B} / 2400-555 \mathrm{MHz}$. Deviation to 300KHz TF1058 2 450-1250MHz 1.6-4000MHz
PRINTED CIRCUIT MOTORS 'Printed Motors Ltd' type G16M4. 60V DC. 5.5 amps. Continuous torque 140 oz . in. 2350 rpm . Diameter $7.5^{\prime \prime}$. Depth $2.5^{\prime \prime}$. Shaft diam. $1 / 2$ \& $3 / 4^{\prime \prime}$. Price from Printed Motors is now over $£ 150$ ea. Supplied in good, used condition, tested \& guaranteed $£ 25$ each (postage $£ 3$).
AUDO \% R RF SIGMAL GEMERATORS AIRMEC 352 Sweep Generator. MARCONI TF1066B/1 (AM/FM 10
LABORATOAY OVENS. - Gailenkamp 3 3 c 20-WAY JACK SOCKET STRIPS. type with two normally closed contacts $£ 2.50$ oach (+250 above -20 p 0 oa . (pp free).

DC POWER SUPPHE 133

RANK KALEE 1742. Wów \& Flutter Meter.
AIRMEC 314 A Voltmeter. 300 mV (FSD)--300
\qquad

HEWLETT-PACKARD $8551 \mathrm{~B} / 851 \mathrm{~B}$ Spectrum Analyser.
HEWZ-AOGZC.
HEWLET-PACKARD tuned amp \& null detector.

TEXSCAN VS-60B SWEeep Generator. 0 -0-1000 MHz $£ 250$

$\frac{\text { TELONIC } 121 \text { X-Y Display units } 595 \text {. }}{\text { OSCILLOSCOPE SALE }}$
 TELEOUIPMENT D75.
TEEEOUUPMENT OM64 Storage scope DYNAMCO D7100.
HEWLETT PACKARD $122 A$ SB. Audio.
AlRMEC 279.4 Beam Display Scope.
TEKTRONIX $581 A .545 A$
TEKTRON1X 581 A. 545 \& \& B, $544,661,515 A$.

9 \& 10 CHAPEL ST., LONDON, NW1 | $01-7237851$ |
| :--- |
| ADJACENTTO EDG WARE ROAD MET. LINE STATITON |
| 1 |

The AIRAMCO Mikro IOOO

-The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combin
State of Art technology with simplicity State of Art technology with simplicity and durability to give
powerful small business system at a very competitive price. Driven by a 2.5 MHz or 4 MHz a very competitive price. around Industry Standard S100 Bus, the Mikro 1000 is designe to provide the ease of expansion necessary in a modern
growing business or industry - memory is expandable from 32 K to 256 K , with up to 4 Megabytes of on-line
disk storage. disk storage.
The integral VDU has an 80 cols. $\times 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key machine, and may be programmed for user functions such as word processing commands.
As well as
As well as supporting all CP/M based languages, the Mikro 100 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact:
Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP. Tel: 029457755 Telex: 779808

WW-076 FOR FURTHER DETAILS

COMPUTER APPRECIATION

	motit
univis wad	
Lectrac	
Mil	

INDEX TO ADVERTISERS APRIL

The biggest name in solder worldwide

Toolbox Reels.
Multicore 5-core solder for general use. Suitable for electrical joints (B.S. 219 GradeG). $40 / 60 \mathrm{tin} /$ lead. 1.6 mm dia. Size 3. $£ 3.91$ per reel. Saubit.
Multicore 5 -core solder for radio, T.V. and similar work. Reduces copper erosion. Suitableforservice engineers and manufacturers using small quantities of solder. 1.2 mm dia. Size 12 . $£ 3.91$ per reel.

Multicore Wick.
Multicore solder-wick for removing solder from virtually any joint.
1.7 mm dia. Size $\mathrm{AB} 10 . £ 1.38$ per reel.

Bib Hi-Fi Accessories Ltd., (Solder Division), Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire HP2 4RQ. Telephone: (0442) 61291.

Products that help you make a better iob of it.

Handy Dispensers		Per pack
PC115	for printed circuits.	£1.15
SV130	for radio and T.V. repairs.	£1.61
AR140	for non-electrical applications, except aluminium	£1.38
SS160	for stainless steeland silver jewellery.	£2.53
19A	for all electronic joints. non-corrosive.	96p
AL150 BCA16	for aluminium. solder cream for stainless steel, jewellery and house-	£1.93
BCR10	hold products (non-electrical). solder cream for electronic and electrical use.	$£ 3.22$ $£ 1.38$
BCA14	all purpose solder cream. non-electrical jointing and repairing.	£1.38

Soldering Flux Pástes.
Multicore soldering flux paste. Extra fast, non-
corrosive, rosin-flux for electrical and general purpose soldering.
Rosin R.F10. 35 g net. 69 p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non-electrical.
Arax A.F14.35g.69p per pack.

Econopak.
Ersin Multicore 5-core solder. Contains non-corrosive flux for electrical applications.
1.2 mm dia. 200 g Econopak. Size 13A. $£ 4.14$ per reel.

Metal Soldering.
Arax Multicore 4-acid-coresolder for metal fabrication (not aluminium) and repairs.
$40 / 60 \mathrm{tin} /$ lead. 1.6 mm dia. Size $11 . £ 3.91$ per reel.

Wire Stripper and cutter.
Wire stripper and cutter with precision ground and hardened steel jaws. Adjustable to most wire sizes With handle locking-catch and easy-grip plastic covered handles.
Ref: $9 . £ 2.69$ per pair.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E.

[^0]:

